Managing the Lifetime of Versions in Digital Archives

Randal C. Burns for the Digital Government (dg.o)

DIGARCH PIs Meeting 17 May 2005

Department of Computer Science, Johns Hopkins University

Project Goals

- Secure deletion for versioning archives
 - systems compliant with the security and auditability mandates of federal legislation
 - support privacy rights of individuals
 - limit liability of data owners and managers
- Development of technology
 - storage system and cryptographic tools
- Release an open-source file system
 - inexpensive compliance and privacy for everyone

Regulating the Paperless World

- Congress and the courts are addressing the importance of managing electronic records
- Over 4,000 laws and regulations
 - corporate records and auditing (Sarbanes-Oxley, 2002)
 - Federal Information Security Management Act (2002)
 - Federal Records Act
- Some with explicit deletion requirements
 - Health Insurance Portability and Accountability Act (1996)

Fine-Grained, Secure Deletion

- Secure deletion = deleted data are irrecoverable
 - to the owner of the data or system administrators
 - when an adversary has physical access to a disk
 - when an adversary has encryption keys
- Fine-grained = a single version of a file may be deleted
- Present systems aren't good enough
 - free data blocks for use in future allocations
 - even after reallocation, overwritten data may be recovered

The Need for Secure Deletion

- For privacy protection
 - re-classifying information involves deletion
 - when a disk is retired or stolen
 - patients have the right to redact portions of their records
- To limit liability
 - records that go out of audit scope should do so forever
- Even in permanent archives
 - as part access control, changing policy
 - for storage management, any time data are moved

Obstacles to Secure Deletion

- Existing solutions do not translate to versioning archives
- Secure overwriting is untenably slow
 - data blocks are overwritten many times with alternating patterns of 1s and 0s
 - magnetic media is degaussed
- Cryptographic techniques are not fine-grained

The Central Idea

$$f_k(B_i, N) \to C_i \parallel S_i$$

- A keyed transform
 - converts a data block and a nonce
 - into an encrypted block and a stub
- When the key is private, data are secure and authenticated
- Securely deleting stub, securely deletes block, even after the key has been exposed

dg.o: DIGARCH PIs May 17th, 2005

IOHNS

NS

Secure Deletion Example

Receive a write to block #2 at time 17

dg.o: DIGARCH PIs May 17th, 2005

Secure Deletion Example

Delete file at time 11

IOHNS

dg.o: DIGARCH PIs May 17th, 2005

Features of our System Design

- Stubs are not secret
 - stored on disk as part of metadata
- Stubs make for efficient, secure deletion
 - stubs are stored contiguously
 - delete a large amount of data (1 MB) by overwriting a small, contiguous region of stubs (4 KB)
- Increases deletion performance by a factor of a thousand or more
 - when compared with secure overwriting
 - depending upon file size and system block size

Applicability of Secure Deletion

- For systems that
 - use disk encryption
 - share-content between files or versions
- This includes versioning file systems and content-indexing archives

Project Tasks

- Development of secure deletion algorithms
 - provable security
 - minimize space overhead
- System development
 - compliance features for our ext3cow open-source, versioning file system for Linux
 - build into content sharing archives
- Key management for versions

Research Directions

- Secure deletion across multiple replicas
 - delete a file system image and its backup(s)
 - ability to delete and fault-tolerance compete
- Strong auditability
 - provably secure version histories

A Paperless World

- Information is becoming entirely electronic
 - financial records, medical records, federal data
 - 300 million computers storing 150,000 terabytes
- Tradeoffs in electronic record keeping
 - eases use, sharing, and indexing/searching
 - creates a new set of vulnerabilities
 - exposure of data that are deleted or discarded
 - the undetected modification of archived data

Distilling Regulatory Requirements

- Audit Trail
 - Files should be versioned over time
 - Versions need to accessible in real-time
- Secure Storage
 - Privacy and confidentiality
- Authentication and Non-repudiation
 - Binding a person to the changes they make
 - Able to make a strong statement about the validity of data

Existing Solutions

- Secure Overwrite [Gutmann 1996]
 - data blocks are overwritten many times with alternating patterns of 1s and 0s
 - magnetic media is degaussed
- Key Disposal [Boneh & Lipton 1996]
 - data encrypted with a key
 - key is securely deleted, eliminating meaningful data access

The Ext3cow File System

- Open-source file system that implements file system snapshot and versioning
 - Captures immutable, point-in-time views of the entire file system
- Novel and intuitive *time-shifting* interface for accessing the past
- Encapsulated entirely in the file system
- Low storage overhead and negligible performance degradation

Ext3cow Status

- Fully implemented file system available at: www.ext3cow.com
 - Thousands of visitors, hundreds of downloads
- Active development mailing list
- Ext3cow being used as the foundation of other research and industrial projects
 - JHU, UCB, UCSC, Columbia, USC
 - Infrant Technologies
- A paper on the implementation of ext3cow to appear in ACM Transactions on Storage, May, 2005

Our Algorithms

All-or-Nothing Deletion

- In AON, all ciphertext blocks must be present in order to decrypt a block
- The stub is an expansion of the encrypted data
- Without stub, data is irrecoverable
- Efficient, however, weak against knownplain text attacks

Random Key Deletion

- Create a random key for every block encrypted
- Encrypt data with random key
- Stub is the encryption of random key with the user's key
- May be slower, requires more space

dg.o: DIGARCH PIs May 17th, 2005

Electronic Record Legislation

- HIPAA (1996)
 - Technical security mechanisms
 - Physical safeguards
- E-SIGN (2000)
 - Digital contracts are as legitimate as paper contracts
- FISMA (2002)
 - Framework for ensuring security controls for storage
 - Security of system must be commensurate with security of data

- Sarbanes-Oxley (2002)
 - CEO, CFO responsible for accurate financial reports
 - Management assessment of internal controls
 - Real time disclosure
 - Criminal penalties for altering documents
- Gramm-Leach-Bliley (2002)
 - Consumer records kept confidential
 - Protect against threats and unauthorized access
- Federal Records Act
- DoD Directive 5015.2

AON Encryption

Input: Data d_1, \dots, d_n , Block ID *id*, Counter *x*, Encryption key *K*, MAC key *M*

$$\begin{aligned} 1: ctr_{1} &\leftarrow id \parallel x \parallel 1 \parallel 0^{128 - |x| - |id| - 1} \\ 2: c_{1}, ..., c_{m} &\leftarrow AES - CTR_{K}^{ctr_{1}}(d_{1}, ..., d_{m}) \\ 3: t &\leftarrow HMAC - SHA - 1_{M}(c_{1}, ..., c_{m}) \\ 4: ctr_{2} &\leftarrow id \parallel x \parallel 0^{128 - |x| - |id|} \\ 5: x_{1}, ..., x_{m} &\leftarrow AES - CTR_{t}^{ctr_{2}}(c_{1}, ..., c_{m}) \\ 6: x_{0} &\leftarrow x_{1} \oplus ... \oplus x_{m} \oplus t \end{aligned}$$

Output: Ciphertext x_1, \dots, x_m , Stub x_0

dg.o: DIGARCH PIs May 17th, 2005

Random Key Encryption

Input: Data d_1, \dots, d_n , Block ID *id*, Counter *x*, Encryption key *K*, MAC key *M*

 $1: k \leftarrow \mathbb{R} \quad K_{AE}$ $2: nonce \leftarrow id \parallel x$ $3: c_1, \dots, c_m \leftarrow AE_k^{nonce}(d_1, \dots, d_n)$ $4: ctr \leftarrow id \parallel x \parallel 0^{128 - |x| - |id|}$ $5: c_0 \leftarrow AES - CTR_K^{ctr}(k)$ $6: t \leftarrow HMAC - SHA - 1_M(ctr, c_o, r)$

Output: Ciphertext $c_1, \ldots c_n$, Stub $x_0, t, c_1, \ldots c_m$

dg.o: DIGARCH PIs May 17th, 2005