
Johns Hopkins University Archive Ingest and Handling Test (AIHT)
Final Report

I) Introduction
A) Project Description

The Archive Ingest and Handling Test (AIHT) was funded by the Library
of Congress (LC) as a component of its National Digital Information
Infrastructure and Preservation Program (NDIIPP). The purpose of this
test was to evaluate in an unconstrained manner how participants would
manage the task of preserving an archive provided in a format that was
not predetermined by the participants. The September 11 (“911”) Digital
Archive serviced from the Center for History and New Media at George
Mason University was selected for this purpose.

B) Personnel
Sayeed Choudhury, Project Manager, provided overall administrative
oversight of the project, including personnel issues, project reporting, and
resolution of any issues that arose during the term of the contract.

Tim DiLauro, Technical Lead, provided overall technical oversight,
including overall data architecture goals.

Jaquelyn Gourley, Project Coordinator, tracked project activity and
worked with Choudhury and DiLauro to satisfy both project update and
financial reporting requirements.

Johnny Graettinger, Student Programmer, analyzed performance
problems in DSpace and Fedora.

Ying Gu, Student Programmer, examined the archive metadata for
consistency and investigated image manipulation in Java.

Mark Patton, Software Developer, developed software and Java class
design, supported the project wiki, and supervised student programmers
on the project.

David Reynolds, Metadata Specialist, supported the metadata
development aspects of the project.

Jason Riesa, Student Programmer, wrote a tool to validate our METS
format.

C) Motivation
Johns Hopkins University (JHU) saw participation as an opportunity to
pursue several areas of interest. Primary among these was the evaluation
of content repositories as platforms for digital preservation. We have

1

been concerned for quite some time that many in the digital library
community conflate the storage of digital objects in a repository with the
preservation of those objects. Participating in this test would give us an
opportunity to experiment with repositories and digital preservation.

We were also interested in evaluating the possibility of implementing an
API over existing repository applications to determine the feasibility of
constructing such a layer and the ease with which such a layer could be
applied in practice.

JHU was already experimenting with Fedora and had tested ingestion of
content into DSpace. The opportunity to get more hands on experience
with the facilities of these two open source efforts was also a motivator.

Project Manager Choudhury and Technical Lead DiLauro had
participated in a number of the NDIIPP planning meetings that lead to
the conceptualization of and call for AIHT proposals. Based on this
participation, Hopkins became especially interested in validating a level
of activity, which could be described as a necessary, minimal level
digital preservation.

D) Initial Conditions
Project participants were provided with a USB drive containing the
following:

* A short README.txt file with a brief description of the contents of the
drive.
* A tar archive of the content files and a file containing a checksum for
the tar file.
* Metadata associated with the archive in XML, MySQL (tables &
dump), and Microsoft Access formats.

E) Strategy
JHU chose a strategy of implementing an application-agnostic repository
layer and performing the AIHT using both DSpace 1.2.1 and Fedora
1.2.1. Because of this approach, it was also necessary for us to create a
data model that could be supported by both of these repository
applications. We chose to create a very simple high-level interface
consisting of container ("DataGroup") and item ("DataItem") objects.

Although this metadata was of varying quality, it was the only metadata
available that described the individual objects. Since this metadata
comprises descriptive metadata, technical metadata, rights metadata, and
digital provenance metadata, we used the Metadata Encoding and
Transmission Standard (METS) 1.3 as a wrapper for all forms of
metadata associated with a particular digital object. We converted the

2

various supplied and extracted metadata to appropriate METS extension
schemas such as the Metadata Object Description Schema (MODS) for
the descriptive and source metadata sections, Digital Production and
Provenance Metadata Extension Schema (DIGIPROVMD) for the digital
provenance section, and Rights Declaration Metadata Extension Schema
(METSRights) for the rights section. Whenever possible we used
displayLabel attributes that matched the field names from the original
911archive database.

JHU focused on developing the supplied metadata into a useful package
rather than trying to extract and analyze technical metadata from the
digital objects themselves. We decided that the metadata would be most
useful to us and to our partners if it were converted from its idiosyncratic
original format to the widely supported standards mentioned in the
preceding paragraph. To accomplish this, we created a crosswalk
between the original format and MODS, METSRights and
DIGIPROVMD. Additional metadata was captured from the digital
objects and their file structure.

One major difficulty in analyzing the supplied metadata was in working
with such a large XML file. The file was too big to examine in a text
editor, so it had to be examined in chunks using the Less for Windows
file pager program. This process was extremely slow and cumbersome,
so we will have to find a better solution when working with large XML
files in the future.

In order to keep the size of the METS objects relatively small, we created
a separate METS object for each digital object and for each collection in
the archive. We also considered creating METS objects at the archive
collection level but decided against it. We defined a METS object as a
discrete entry in the OBJECT table of the original archive. We then
mapped all the associated metadata from OBJECT and other tables into
the METS object.

II) Phase I: Ingest & Markup

The first phase was designed to track the ingestion and handling of a real-
world archive, the George Mason 911 Archive. The objective for each
participant was to transfer and ingest the archive, preserving the integrity of
the content within the archive, and backup and restore the entire archive.

As mentioned earlier, we chose a model consisting of a collection of
containers (DataGroup class) and the items they contained (DataItem class).
These two classes of objects were derived from an abstract DataObject class.

DataObject:

3

 * name
 * id
 * arbitrary string

DataGroup extends DataObject:

 * set of DataGroup ids
 * set of DataItem ids

DataItem extends DataObject:

 * set of DataItems ids it is dependant on
 * set of DataItems ids that depend on it
 * set of Versions

Version:

 * Mime Type
 * format handle
 * MD5 checksum
 * datastream content
 * creation date

For the 911 archive, we modeled each collection (<row> element within the
single <COLLECTIONS> element) as a DataGroup. Each file was modeled
as a DataItem. The collections within the archive were directories in the
archive. We instantiated this model in different ways for different purposes.
For management, we stored the DataObjects in a repository.

For transfer and ingestion we stored the DataObjects as METS files, one file
per object. Each DataObject's METS file contains descriptive, administrative,
and technical metadata -- derived from the 911 archive metadata -- and the
other information required by the data model. When a METS file is loaded
and turned into a DataObject, the METS file is stored as a string in the
DataObject. The METS content was stored in order to associate the
administrative and technical metadata in the METS file with the DataObject.
This self-reference has some implications for migration and export. Since the
METS stored with each DataObject is treated as the canonical representation,
the METS must be rewritten when exported (the METS must refer to the
local datastreams) and when a DataObject is migrated. We would design this
differently, were we to do it again.

4

Within a DataItem, the actual archive file is referenced using URLs. Fedora,
unfortunately, requires an "http" scheme URL for performing ingestion and
could not read from a "file" schemeURL or be given datastream bytes inline.
Therefore, we had to make the contents available via a web server to support
ingestion.

A) Ingestion Process
Generate Submission Information Package (SIP)

We begin by generating the SIP, consisting of METS files based on the
metadata provided with the archive. JHU chose to use the MySQL
database tables for this process, though we also could have used the
XML or Access versions of the metadata. We chose this approach
because it was easier to integrate than the other two formats.

To explore the utility of our data model, we parsed HTML files,
extracting and storing links to other files in the archive. Ideally, such a
mechanism would be generalized so that similar dependency checking
would be facilitated across a variety of content types.

During this process we discovered that there were some errors in the
database. While evaluating these errors, we additionally discovered
that there were inconsistencies between at least the MySQL and XML
versions of the metadata.

Ingestion into Repository

** Ingestion process

Once we have the SIP format created, the content can be ingested
into the repository. Within the archive, files reference each other
using absolute or relative URLs, which are correlated to the archive
identifier in the provided metadata. When we move these objects
into the repository, however, we want to be able to manage these
relationships at the repository layer.

To accomplish this, the ingestion process requires us to iterate over
each DataObject twice. The first iteration reserves a repository
identifier for each DataObject and constructs a mapping between
this repository ID and the object's archive ID. The second iteration
uses this mapping to handle references between DataObjects. The
new repository identifier based relationships are stored back into
the DataObjects before they are ingested into the repository.

Finally, the DataObject and associated content are stored into the
repository. When the ingestion finishes, the root handle is returned.
This is the repository identifier of the root DataGroup of the

5

ingested tree of digital objects.

** Issues performing the ingestion

In both Fedora and DSpace, bulk ingestion was extremely slow.
Ingestion initially took days to complete. As the amount of content
in the repository grew, the time for an ingest stretched to a week or
more. Late in the project, we tracked down and resolved several
database problems in Fedora. After the fixes, Fedora ingestion took
about a day, still a relatively long time. We also found database
problems in DSpace, but did not have time to track them down until
the very end of the project. We have reported these problems to the
DSpace developer team.

In addition to their performance problems, both DSpace and Fedora
imposed additional constraints on the ingestion process. DSpace
required that the bulk ingest process, which uses the DSpace Java
API, has filesystem access to the DSpace assetstore. Fedora
provided an easy to use SOAP interface, but required that all
ingested datastreams be fetched from an http scheme URL, so the
contents of the archive had to be placed behind a web server to
facilitate ingestion.

Because of the two-phase process and the database performance
problems, ingestion was fairly time-consuming. Often during
ingestion, coding errors (especially in the early stages), local
memory, and server resource issues caused abnormal termination.
With the general slowness of the process and the need to restart the
ingestion from the beginning, minor problems had the potential to --
and actually did -- cause long delays.

To improve overall performance, we implemented a checkpoint
mechanism that would allow a restart at any time after the first
phase (or iteration) of ingestion had completed. The ingestion state
(the mapping of archive ids to repository ids and the list of ids that
have already been ingested) is saved to a file. If the ingestion
terminates, then it can be restarted from this checkpoint.

During ingestion, we also discovered that some of the pathnames in
the metadata database were wrong, causing the ingestion to fail. We
modified the ingestion process to be more fault tolerant and to log
problems for easier resolution and tracking.

The size of the collection was also a factor. The overall ingestion
process had memory issues until we rewrote the METS loading
code and ingestion code to stream DataObjects. Initially, we kept

6

all objects in memory to build the mapping from archive to
repository ids.

III) Phase II: Archive Export & Re-import

The goal of this phase of the project was for each participant to export its
archive in a format of its own choosing. After all participants completed
their exports, each participant selected one of the other participants’ archives
to ingest anew.

Text from the SOW: This phase will examine the issues and protocol
requirements for the passing of whole archives -- with accompanying
metadata -- between institutions operating different preservation regimes.
Participants in the AIHT will develop strategies for this handoff through
experience gained during the first phase.

Counter parties for the archive transfer will be chosen at random before the
transfer is to occur. Each participant will export an archive to one other
participant and will receive a copy of the archive from one other participant.
Participants will work out shared assumptions between themselves leading to
the development of a minimum set of broadly applicable standards.

A) Export

Export was a simple matter of starting with the root DataGroup object
and recursing over the connected objects in the repository. The METS
metadata and content datastream(s) associated with each object were
written to disk as the object was traversed.

We needed to modify our METS format slightly to be able to load an
exported archive. Our original format required http URLs. Now we also
needed to support loading files from the same directory. We did this by
allowing a DataItem hold an array of bytes or a URL. The METS format
indicated data was available locally with a handle. The last issue was
dealing with Fedora's requirement for http URLs. We had to modify the
Fedora layer so that during ingest the bytes would be written out to a file
accessible via a webserver.

B) Stanford Ingest of JHU Export

Stanford commented after their ingest of our archive that they would
have expected one METS object for the entire archive. Because our
approach used many METS files -- on the order of the number of items in
the archive -- the Stanford ingest programs experienced out of memory
conditions. This will be an area that we will look at for future archive
ingest projects, though this situation may have been ameliorated, had

7

they used the reference code provided by JHU.

This points to a broader issue observed during the various import
processes during this phase. Three of the four non-LC participants,
including JHU, used METS as part of the their dissemination packages.
Each of our approaches was different. Clearly there would be some
advantage to working toward at least some common elements for these.
Establishing this type of agreement early in the project likely would have
improved the efficiency and success of this component.

C) JHU Ingest of Harvard Export

Adapting the Harvard archive to our repository layer was relatively easy.
We simply had to convert the Harvard archive to our data model and
then write a small amount of code to export it nicely. We chose to use a
single root DataGroup that contained a DataItem for each file in the
Harvard archive.

Our Harvard ingestion required two steps in order to keep memory usage
down. (The two steps could be avoided by using a streaming parser,
looping through the xml twice, and creating temporary files.) First, all of
the metadata is dumped from the Harvard export.xml file to a directory
with aith.tool.GenerateHarvard. Then aiht.tool.FedoraIngest can read
from that directory and do the ingestion. We made the Harvard archive
files available on a web server to avoid making another copy of the
content and keep the ingestion efficient.

The Harvard export format is a directory structure organized in a
hierarchy similar to the original 911 archive. For example, the file
aiht/data/2004/12/21/29/49987.txt in the 911 archive maps to the
following in the Harvard archive:
 aiht/data/2004/12/21/29/49987.txt.0 - the data for version 0
 aiht/data/2004/12/21/29/49987.txt.xml - the technical metadata
 aiht/data/2004/12/21/29/49987.txt.info - other info like mimetype and
checksum for each version in a simple text format

We easily could have stored Harvard's export.xml in the repository as
XML metadata of the root DataGroup, but we did not. Also note that we
did not write a reader for the Harvard export format. Ideally, we would
have had the intermediate ingest format be the same as the export format,
which is what we did for our own archive.

IV) Phase III: Format Transformation

While some other participants focused on the selection of most appropriate
formats and transformation tools for preservation quality, JHU's goal for this

8

phase of the project was to implement a flexible mechanism that would
allow systematic migration of content that met specific criteria. We
anticipate that the expertise of others in the area of appropriate preservation
formats and software tools will eventually be captured in format registries.
While it would be ideal to have a generalized mechanism for doing this, we
chose to filter this operation based on the MimeType.

A) Design

For the 911 archive we chose to migrate JPEGs to TIFFs and add
metadata about the conversion to the TIFFs. The JPEGs are not deleted;
we just add a new version to JPEG DataItems.

The migration state is saved to a file so it can be restarted. The metadata
is NISO MIX XML stored in the ImageDescription field of the TIFF. We
encoded information for the NISO MIX child elements of
ChangeHistory, including DateTimeProcessed, ProcessingAgency,
ProcessingSoftware, and ProcessingActions. We used the Java ImageIO
library to do the conversion.

B) Migration process
Unfortunately the library appears to leak memory. The migration process
eventually runs out of memory and stops. Additionally, the library also
catastrophically fails on some input. We worked around this problem by
automatically restarting the migration process if it fails. To speed up
restarting, ids of migrated DataObjects are stored. The process would run
out of memory 5 times during each migration.

There are about 12500 jpgs in the 911 archive. Of those 182 failed to
convert. The Java ImageIO library throws null pointer exceptions and
occasionally runs out of memory on some jpegs.

We eventually conducted an ingest into DSpace, migration, and export
with only one DataItem failing. During migration we ran out of
diskspace. Since the migration was not a transaction, the DataObject was
left in an indeterminate state and could not be exported. (The underlying
repository would have to roll back on errors in order for the repository
layer to make the migration a transaction.)

Because the METS stored with each DataObject was treated by the
export process as the canonical representation of that DataObject, the
migration process had to modify that METS as well as add a new version
to a DataItem. This complicated the repository implementations a
somewhat, as the repositories now had to support the additional
functionality of setting a string for each DataObject.

9

V) Lessons Learned and Recommendations
A) Lessons Learned

Technical Issues
Memory consumption was a big issue, even with what is, in the grand
scheme of things, a relatively small archive, in terms of both absolute
size and number of objects. Therefore, when processing objects,
stream through them and write intermediate results to disk, instead of
keeping everything in memory.

We made the export needlessly complicated by storing the METS each
DataObject. The METS should have been assembled from the content
instead of stored and then reassembled during export.

Having separate command line applications for every DSpace and
Fedora function was cumbersome. The configuration info for the
repositories should have been stored in one config file and referred to
symbolically. This will become easier as we develop a more systematic
approach to layering repository APIs over various implementations.

The log files produced during ingest, export, and migration are
important. They should be produced in some structured way so they can
be used easily later. For example it should be possible to easily figure
out what items failed a migration and why.

After a bulk operation there should be an easy way to rollback the
changes.

Be prepared for tools not to work perfectly (e.g., TIFF Java ImageIO
library problems), especially when you have no control over their
development.

Organizational Issues
Problems with contract negotiations significantly delayed the start of
work. Additionally, in our case, this caused extra delays in hardware
procurement because of a conflict with Apple Computer's product
release cycle.

Because the project timeline did not correspond to the academic
schedule, it was difficult to attract students. Most students had
commitments by the time the project started.

Because the project involved only a single source archive, it allowed
participants to over optimize their solutions for this particular archive.
A future project might ask participants to develop a more generalized
solution, perhaps based on an initial reference archive, and then see

10

how that solution performs with another archive.

The metadata provided to the project participants was inconsistent. The
contents of the MySQL database did not match that encoded in the
XML. We did not evaluate the contents of the Microsoft Access
database. While this might seem like a technical problem, we feel that
it is much more related to process. Basically, there should be only one
source for each data element. Derivatives and aggregations can be
produced from these to provide content in whatever form is necessary.

B) Observations

Format Registries
Format registries will form the basis for future automated processes that
support ingestion into and ongoing management (including format
migration) of content already in repositories. We anticipate that these
facilities will eventually become the depositories for expert analysis
and tools related generally to formats, with specific emphasis on the
preservation of those formats. More effort should be focused on
developing this critical piece of infrastructure.

Fedora
Fedora has a SOAP interface that was difficult to work with. The
biggest problem was a lack of documentation.

The Fedora implementation represented each DataObject with a Fedora
Object. A Fedora Object contained one datastream with inline XML
data about the DataObject. Another inline XML datastream contained a
base 64 encoded string (the JHU METS format). The other datastreams
of a FedoraObject each stored a DataItem version.

The Fedora ingest performance problems occurred because certain
columns were not indexed. We have communicated our results to the
Fedora development team and they are incorporating our
recommendations into newer releases of Fedora.

DSpace
DSpace could only be manipulated by a local process which uses the
DSpace java API to access storage. At the time of this writing, the
DSpace@Cambridge project is completing work on a set of web
services that would allow this process to be performed remotely. More
information about this work is available on DSpace wiki at .

The DSpace implementation encodes each DataObject as a DSpace
Item. Each Item uses its DC metadata to encode information about the
DataObject. DataItem versions are stored in a Bundle.

11

The DSpace GUI does not handle content created this way very well. If
we were to do this again, we would need to align our datastream
naming conventions with the bitstream naming conventions of DSpace.
This would be easy to accomplish.

We also had a problem with DSpace performance. These issues have
been reported back to the DSpace community. We have written a
report, which is currently available on the DSpace wiki at .

VI) Attached Appendices

A. Metadata mapping spreadsheet - AIHTtoMETSmapRev5-05.xls
B. DSpace and Fedora performance reports - DSpace_AIHT.rtf and

Fedora_AIHT.rtf
C. Source code - aiht-distrib.tar.gz

12

	Introduction

	Project Description

	Personnel

	Motivation

	Initial Conditions

	Strategy

	Phase I: Ingest & Markup

	Ingestion Process

	Phase II: Archive Export & Re-import

	Export

	Stanford Ingest of JHU Export

	JHU Ingest of Harvard Export

	Phase III: Format Transformation

	Design

	Migration Process

	Lesson Learned and Recommendations

	Lessons Learned

	Observations

	Attached Appendices

