Migrating Archives at Scale

Jason Hick Lawrence Berkeley National Laboratory NERSC Storage Systems Group

Designing Storage Architectures for Digital Collections Sep 25, 2014

Agenda

Metadata transformations

- New or redundant hardware is critical
- Backups, backups metadata checkpoints
- Process or luck ultimately determine success

Data migrations

- Accomplish early and accomplish often
- Complete as soon as possible

Move to our new Computational Research and Theory (CRT) building

Migrating our file systems and archive to our new facility

New or redundant hardware is crucial

- Test metadata transformations at scale (e.g. copy of production system unavailable to users)
 - Each large storage system, with its own distinct set of metadata, had unique issues
- Purposefully inject error conditions
 - What if a script fails halfway through its processing?
 - What are we going to do if we have inconsistent metadata?
- Enables a site to quickly recover primary hardware
- Allows time to test before releasing to new users
 - Try to mimic user intensive workloads
 - Let internal staff test before production users

Backups, at key points in process

- Full, self-contained backup before you begin
 - Serves as your fallback in the event of process failure
- Full, self-contained backup before you use the newly transformed system
 - Enables fault detection

Develop a process, avoid relying on luck

- Determine rate of processing to help estimate completion
 - Sometimes this is difficult, but it is important especially if you haven't executed at scale
- Online conversions or migrations are superior
- Have and practice a reversion plan
 - No matter how unlikely
- Validation before returning to production

Adopt new technology and use it!

- Contains operational cost
 - Media budget stays in check
- Don't delay in migrating old data to new type
 - Ensures you can read old data
 - Enables cycling of old media

Early adoption of new tape formats enabled us to reduce our total # of tapes by 10,000 while growing by 18 PBs of data.

How we plan to move to a new facility

Archive and backup system moves will happen last

- Once the dust settles in the new facility
- Consider whether we require new environmentally managed tape room
- Offer primary and secondary copy of user data at two distinct sites

File systems

- Opportunity for setting up new file systems
 - New configurations
 - Leave history encoded in metadata (versions, problems)
 - Read every file because it's a COPY operation
- Smaller file systems will use replication features in GPFS
- Larger file systems using new shift utility (developed by P. Kolano, NASA Ames) to copy data
 - Transfer protocol is highly parallel and tunable
 - Data integrity features (checksum)
 - Persistent capability (retries)
 - Namespace traversal optimized

Summary

- Develop a process and rehearse
 - Introduce errors, try to revert to previous system
- Extra hardware is critical to success
 - Practice at scale if possible
- Be an early adopter of new technology
 - Contains operational expenditures with exponential growth
- Copying data from old to new format or systems
 - Helps eliminate metadata history

Thank you.

