Engineering Issues in Preserving Large Digital Collections

• David S. H. Rosenthal

• • LOCKSS Program • Stanford University Libraries • http://www.lockss.org/ • © 2007 David S. H. Rosenthal

Petabyte for a Century

- Suppose need to keep petabyte for century
 - With 50% chance of every bit surviving undamaged
 - Now that's *big*, in 100 years its 10⁻⁹ of a hard drive
- 0.8 exabit-year with 50% survival unimpaired
 - Consider possibility of bit rot affecting the system
 - Radioactivity analogy, small probability of bit flip
 - Bit half-life $0.8*10^{18}$ yr = ~100M times age of universe
- Imagine contracting for a box that does this
 - Give a test lab a year for black-box benchmark of bids
 - Demonstrated bit half-life >0.8*10¹⁸ yr to qualify

Test Lab

- Build exabyte system, watch for year
 - That's \$500M worth of disk
 - See ~5 bit flips
- Write exabyte once, read 9 times
 - 3 Tb/s sustained I/O bandwidth
- 64-bit arithmetic => 140 peta-comparisons
 - Say we need only 1% chance of mis-comparison
 - That's 18 nines reliability for comparison software
- Black-box approach isn't feasible
 - Reliability requirement beyond our ability to measure

Threat Model

- Media failure
- Hardware failure
- Software failure
- Network failure
- Obsolescence
- Natural Disaster

Threat Model

- Media failure
- Hardware failure
- Software failure
- Network failure
- Obsolescence
- Natural Disaster

- Operator error
- External Attack
- Insider Attack
- Economic Failure
- Organization Failure

Rules of Thumb

- Safer data but higher cost from:
 - More replicas (Lamport 1982)
 - BFT: 3*f*+1 replicas survive *f* simultaneous faults
 - More independent replicas (Baker 2006)
 - Less correlation between faults, therefore
 - Fewer simultaneous faults
 - More frequent audits of replicas (Baker 2006)
 - Shorter lifetime of latent faults, therefore
 - Lower probability of coinciding faults

Implications

- #1 make replicas cheaper
 - Nothing improves reliability more than replicas
- #2 make replicas more independent
 - Correlations happen in unexpected ways
 - Tape & disk not tape vs. disk
- #3 make auditing cheaper, less intrusive
 - Hardware & software need to work together
 - Auditing has to include the access copy

How Likely Are The Threats?

Examples:

- Hardware
 - Schroeder 2007
 - Pinheiro 2007
- Software
 - Prabhakaran 2005
 - Yang 2006

- Operator Error
 - "Most important cause of data loss"
 - Under-reported
- Internal Attack
 - Secret Service report
 - Under-reported
- External Attack
 - Software mono-culture
 - Staniford 2002

LOCKSS

- Lets libraries build collections from Web
 - In use at ~200 libraries worldwide for ~3 years
 - Preserving e-journals, e-books, ETDs, gov docs, ...
 - Collect by web crawl, disseminate by web proxy
- Preserve by P2P mutual audit/repair
 - natural overlap of collections => huge replication
 - highly independent replicas continually audited
 - if damage or loss detected, automatically repaired
- Independently managed local collections
 - cooperate only to reduce cost, raise reliability

LOCKSS Audit & Repair

- LOCKSS boxes continually call polls
 - Invite sample of voters to prove their copies the same
 - Voters compute hash of nonces + their copy
 - Poller computes hash of nonces + its copy, tallies votes
- Three possible poll results
 - Landslide agreement -> poller's copy good
 - Landslide disagreement -> poller's copy bad, get repair
 - Contested poll -> coherent damage -> attack
- Details complex, see ACM ToCS paper
 - Best paper SOSP'03, ACM research award

Credits

- LOCKSS Engineering Team (since 1998)
 - Tom Lipkis, Tom Robertson, Seth Morabito, Thib G-C.
- LOCKSS Research Team (since 2001)
 - Mary Baker, Mehul Shah & colleagues @ HP Labs
 - Mema Roussopoulos & students @ Harvard CS
 - Petros Maniatis & interns @ Intel Research Berkeley
- Vicky Reich, and funding from
 - NSF, Mellon, libraries, LoC, publishers, Sun, ...