

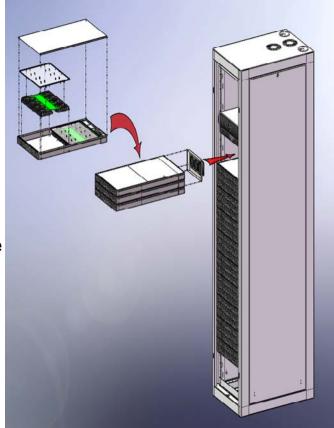
Alexandria Overview

Sept 4, 2015

Alexandria 1U System Block Diagram

Alexandria System Feature Set

Key Hardware Features


- x86 Xeon based CPU
- Top of Rack SAS Expander
- Seagate Developed 1U/16 Drives
- Under 2500lbs
- 42U, 19" Rack

Key Software Features

- VTL- virtual tape library APIs presented through SSC-3 and SMC-3
- Access to these virtual tape libraries can be exported across multiple protocol interconnects - 10GbE, GbE, IB, or FC.
- Works with Hierarchical Storage Managers (i.e. TSM or NetBackUp)
- SMC-3 interfaces will mount multiple virtual tapes
- Build-in Erasure Code for optimum data integrity

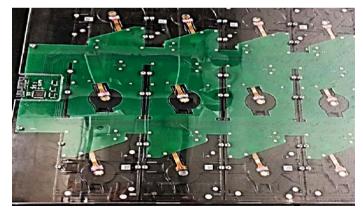
Key Customer Benefits

- Reduced power, lower cost
- Significant TCO gains
- Simple deployment and replacement design

Alexandria: Shared Drive PCB

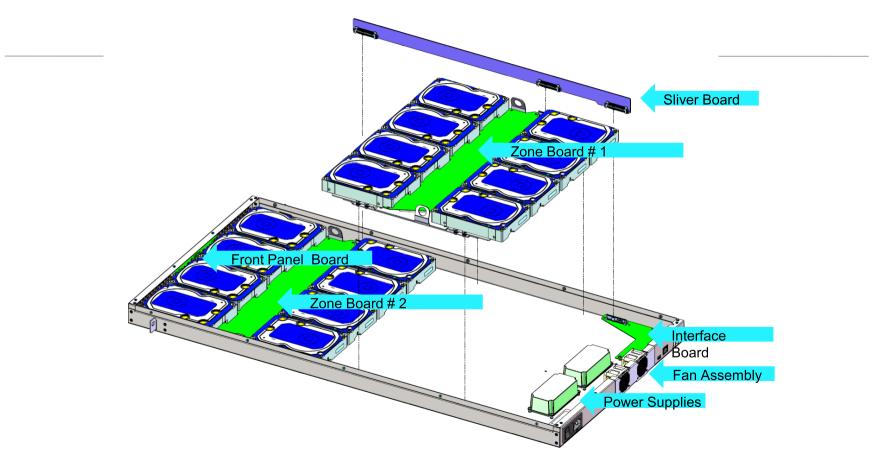
What is it

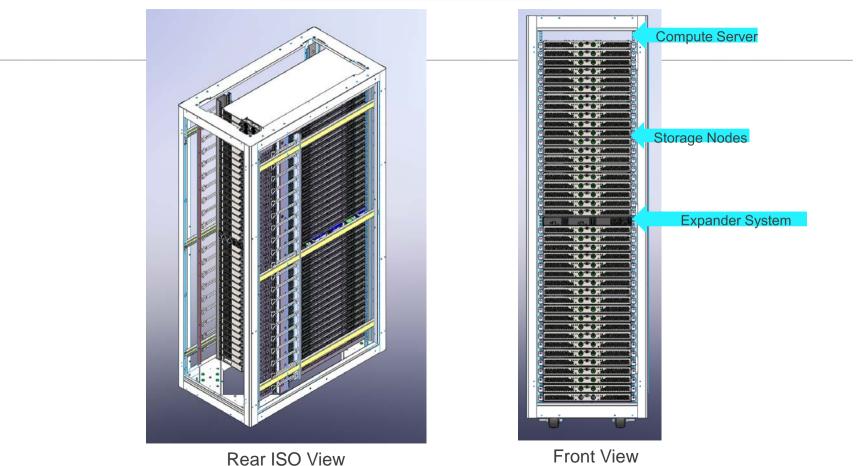
- Low cost, scalable, Cold Store solution
- Lower system cost and power using 1 shared controller to run 8 drives
- Provides lower TCO over tape.
- Can be packaged and sold as a stand alone Storage Node w/SDK


Key Features

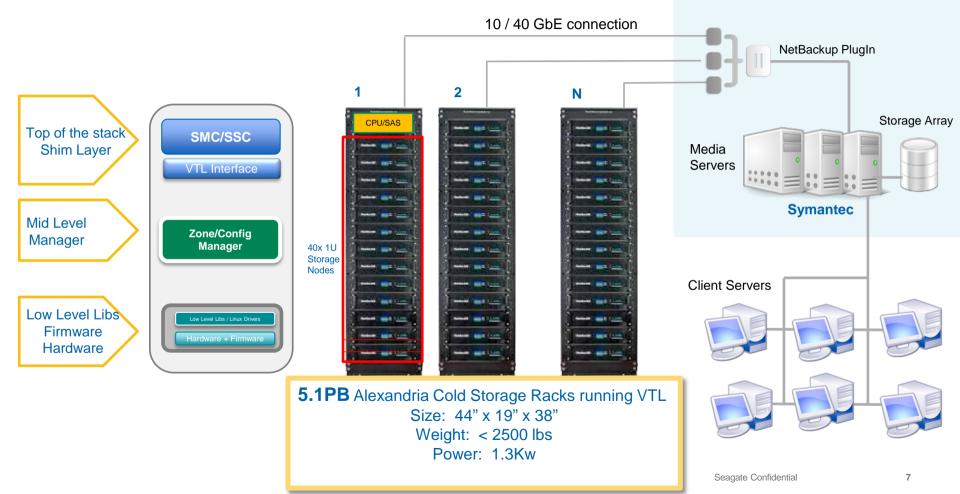
- 8 drives per zone -> One drive on at any time/zone
- High Density: Able to pack 16 drives or greater in 1U
- 3.5", 8TB, SATA drives, 4PB/rack, <1.3kW/rack
- LED front panel indicator on each storage node
- Redundant 12 V open frame power supplies in each storage node

Key Customer Benefits


- Leveraging on HDD core knowledge and infrastructure
- Each zone is the replacement service FRU
- Simple deployment and replacement design



Seagate Confidential


Alexandria Storage Node System

Alexandria Rack System

Alexandria Final End User System Diagram

The Alexandria storage solution is a favorable alternative to large-scale tape storage in the following categories

- Hardware cost
- Lower power consumption
- Faster random access performance
- Ease of manageability
- Scalability

While archive solutions are the first logical application of "shared electronics" solutions, Seagate is investigating broader application of this technology

Backup

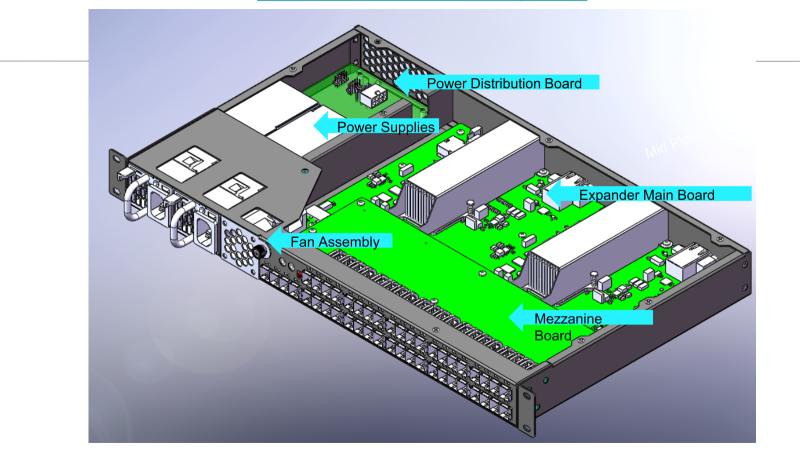
Object Storage on Alexandria Hardware

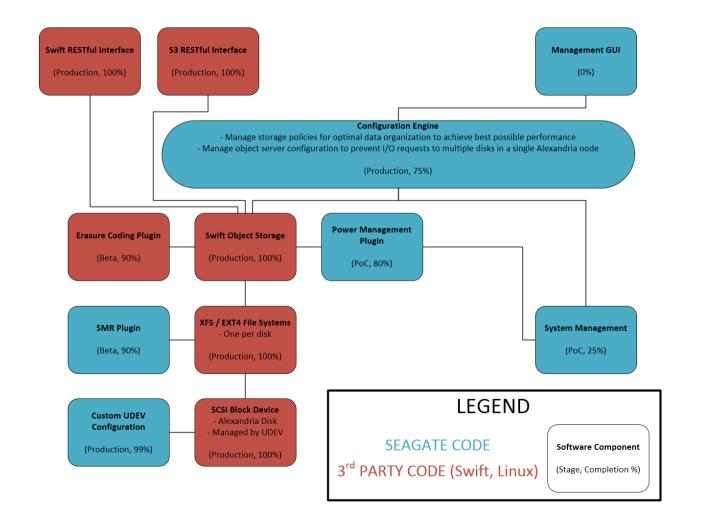
Object interface implementation

- Leverages Openstack Swift on the back-end
- Adds power control to stock Swift code
- Presents a standard object storage front end (Swift or S3)
- Client does not need to be aware of the power state of any drives or where in the system data is stored
 - Compatible with many cloud storage clients without modifications to the client

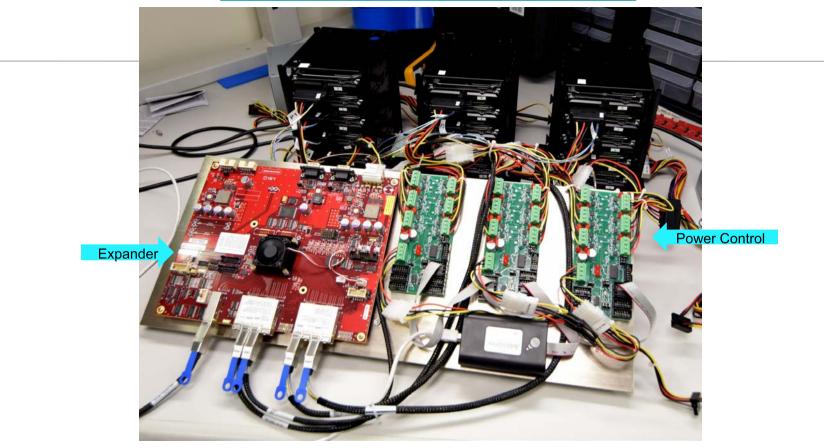
Alexandria Object Storage Definition

Possible use cases for object storage


ALEXANDRIA WITH OBJECT INTERFACE IS	ALEXANDRIA WITH OBJECT INTERFACE IS NOT
- a very low TCO system which can be accessed using standard cloud storage interfaces	- a high cost, high performance, system which can be accessed using block / file interfaces
- a repository for massive amounts of data which do not need to be accessed frequently	- a repository for data which needs to be accessed frequently
 a system which can handle a large amount of throughput for writes, including writes from multiple sources 	- a system which can perform well while executing simultaneous read and write transactions
 a system which has very high sequential read performance 	 a system which has very high random read performance


Object Storage Features

List of status and owners for different features


FEATURE	OWNER	STATUS	
Object Interface (Put, Get, Delete)	Openstack Swift	Production	
Replication	Openstack Swift	Production	
Data Integrity / HDD Validation	Openstack Swift	Production	
Erasure Coding	Openstack Swift	Beta	
S3 Interface	Openstack Swift	Legacy	
Power Management / Hot Plug Support	Seagate	POC Functional	
Data Integrity / HDD Validation Scheduler	Seagate	Not Started	
SMR Optimization	Seagate	Beta	
System management (monitor disk usage)	Seagate	Partial POC Functional	
User Interface (GUI)	Seagate	Not Started	
Deduplication	Seagate	Support not planned	

Alexandria Expander System

Alexandria System Proof of Concept

Engineering Summary

Current Status

- Completed bench level test evaluation of Alexandria 8in1 with Lombard HDDs
 - Error rate measurements for each slot completed and compared to original circuit board
 - No optimization was performed (used existing flash image for testing)
 - BER analysis results show only .1 order lower than the original board
- Completed Integration of 1U enclosure: Two zones, interface card, power supplies and the front panel LED
- Successfully unit tested the first Alexandria production board, verifying the complete path from Linux platform<=>LSI 3008 HBA<=>LSI 3X36 expander<=>I2C<=>SATA BUS<=>Alexandria Zone Board<=>PIC processor
- Demonstrates the successful power managed functionality, read and write functionality, and data integrity test

2015		2016		
Q1 Q2 Q3	Q4	Q1 Q2 Q3	Q4	
Feb Mar Apr May Jun Jul Aug	Sep Oct Nov Dec	Jan Feb Mar Apr May Jun Jul Aug S	Sep Oct Nov E	
CDU 1: Lombard (4TB), Object S3				
CDU 2: Lombard (8TB), VTL				
	CDU 3: Lamarr HA (8TB)	, OST		
Hardware		Hardware		
CPU	X86 Xeon base	CPU	X86 Xeon base	
Expander	LSI demo	Expander	Custom	
# of 1Us	5	# of 1Us	5	
Drive Technolgy	CMR	Drive Technolgy	SMR	
Drive Capacity	4TB	Drive Capacity	8TB	
# of drives/1U	16	# of drives/1U	16	
1U Capacity	64TB	1U Capacity	128TB	
Rack Capacity	320TB	Rack Capacity	320TB	
Rack Configuration	250	Rack Configuration	25U	
Software		Software		
S3 Interface	Openstack,Swift	VTL	Quadstor	
Object	Openstack,Swift	Object	No	
Data Integrity/HDD Validation	No	Data Integrity/HDD Validation	Quadstor	
Replication	Openstack,Swift	Replication	Quadstor	
Erasure Coding	None	Erasure Coding	No	
Power Management/Hot plug	Seagate	Power Management/Hot plug	Seagate	
HDD Validation Scheduler	No	HDD Validation Scheduler	Seagate/Quad	
SMR Optimiztion	N/A	SMR Optimiztion	Seagate	
System mangement (monitor disc usage)	Seagate Beta	System mangement (monitor disc usage)	Seagate	
GUI	No	GUI	Seagate	
Deduplication	No	Deduplication	No	