An Economic Perspective of Disk vs. Flash Media in Archival Storage Preeti Gupta • Avani Wildani • Ethan L. Miller Daniel Rosenthal • Ian F. Adams, Christina Strong • Andy Hospodor

What's the trouble with media for digital preservation?

- Growth in storage media density is slowing
 - Disks still have to be replaced every 5 years
 - Other media may not need to be replaced as often
 - Tapes require a lot of infrastructure
 - Readers (and maybe robots) are expensive
 - Infrastructure is personnel-intensive
- No longer true that replacing media is a big win
 - Replacement media aren't much larger than older ones!
 - We'd like to keep the older ones if they'll continue to work...
- Is disk still the cheapest way to build longterm archives?
 - What about flash memory?

Credit: http://www.emc.com/collateral/about/news/idc-emc-digital-universe-2011-infographic.pd

	Таре	Disk	SSD	Optical disk	
Bandwidth	Very high	High	High	Moderate	
IOPS	Very low	Moderate	High	Very low	
Reader?	Yes	No	No	Yes	
Reliability	Low-moderate	Moderate	High	Low-moderate	
Operational cost	Moderate	Moderate	Low	Moderate	
Capital cost	Low	Low	High	Low	
Longevity	Long*	Short	Moderate	Long * (?)	
Density	Moderate	High	High	Moderate	

- Need to use a model!
 - Can't actually build the archive (time, money)
 - Compute costs based on future assumptions
- Model inputs (for a given type of device)
 - Media service life: maximum lifetime of a device
 - Operational costs: cost of operating a device (cooling, power, and space)
- Overall model inputs (for an entire archive)
 - Data refresh costs: cost to migrate data from one device to another
 - Planning horizon: length of time over which organization considers costs

But where does the money come from?

Storage business models

- Rented storage: pay as you go
 - Amazon S3

CENTER FOR

- Monetized storage: paid by ads
 - Google Mail
- Retrieval model: pay on retrieval
 - Only a small fraction of data is ever retrieved...
- Endowed storage: pay up front
 - Princeton's POSF
- Model uses endowed storage
 - Amount of endowment is a parameter

Using the economic model

- Monte Carlo simulations to calculate the endowment
 - Money grows by varying amounts each year, as in the real world
 - Variation in interest rates affects long-term success!

Replace devices when they do not justify their running costs

- Consider space & power consumption
- Look forward for the duration of the planning horizon
- Pay for new devices using money from the endowment
- Simulation ends (in failure) if the money runs out

Costs drop by the storage density growth rate each year

- New storage is cheaper to purchase and operate
- Existing storage doesn't get any cheaper!

Default Parameters					
Disk cost	\$100	Disk service life	5 years		
Flash cost	\$500	Flash service life	15 years		
Disk operational cost	\$60/year	Simulation duration	100 years		
Flash operational cost	\$20/year	Storage density growth rate	15% / year		

Flash follows same storage density growth curve as disk

• Both flash and disk are experiencing much slower growth moving forward

- Old devices need to be kept for long time to keep endowment low
 - Purchasing new devices requires more money from the endowment
- * Endowment for flash with service life 10 years is comparable to disk with service life 5 years
 - Need for "Archival Flash"

- * Low storage growth rate \Rightarrow initial cost is less important
 - Slight variation in purchase cost doesn't affect long-term preservation costs if the Kryder rate is low

Flash can be cost-competitive with disk

- Flash can be made to live longer without much extra cost, unlike disk
- Alternative technologies like memristors and phase-change memory will evolve in the future

We also found that

- Operational expenses dominate as storage gets denser
- Capital expenses are less important as storage growth rates slow, especially for longer-lived devices
- No time to describe these graphs—ask after the talk
- Digital preservation community should consider alternative technologies to traditional disk (and tape)

- What are the chances of data loss?
- What are the long-term economics of various reliability models?
 - Choose redundancy or longevity?
- What are the best devices to use, given a certain capacity to bandwidth ratio?
- On-demand or on-premise access?
- Building model to accommodate wide range of variation in input parameters
 - Capacity, per-device cost, bandwidth: *rate* of change varies with time
 - Annual failure rate (varying with device age)
- Evaluate performance as well as cost
 - Meet given performance / capacity goals at minimum cost
 - How performant is the cheapest archive with a given cost?

Questions or comments ?

Further information at:

http://www.ssrc.ucsc.edu/proj/archive.html

- Declining storage density growth rate negatively impacts long term preservation costs
 - Effect more pronounced for long duration
- Flash is cost-effective for longer duration!

- Reduced operational cost critical as Kryder rate drops
- Technologies with low operational costs can be as good as traditional disk archives

- Data refresh costs are significant in the initial years
 - Frequent device replacement and high operational costs (for both flash and disk)
- Data refresh costs matter little after 20 years
 - Data size is much smaller relative to new device capacity

