

Fixity File Checking

Designing Storage Architectures

September 2012

Scott Rife

"This is an Archive. We can't afford to lose anything!"

• Our customers are custodians to the history of the United States and do not want to consider the potential loss of content that is certain to happen at some point

Solutions

- At least 2 copies of everything digital
- Test and monitor for the failures
- Refresh the damaged copy from the good copy
- This process must be as automated as possible
- Someday we're going to lose something
 - What's that likelihood?
 - What costs are reasonable to reduce that?

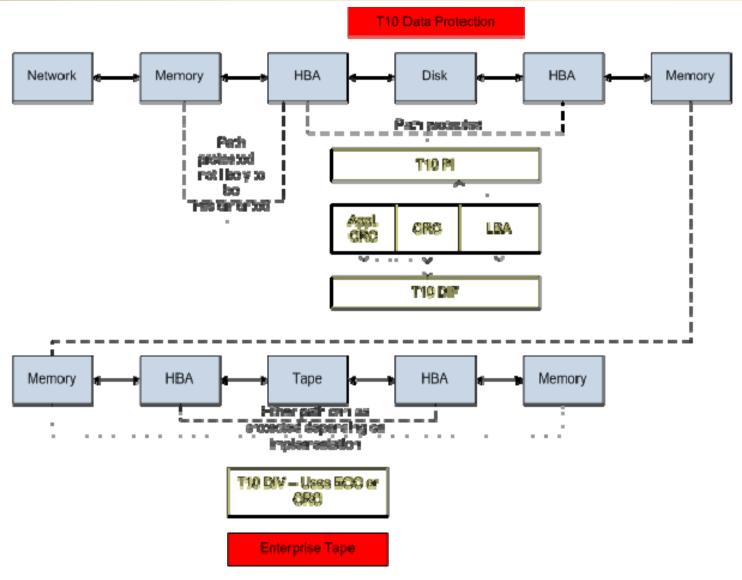
Word on the street

USC Shoah (8 PB collection of videos from holocaust survivors) reported that they were seeing read errors on 1 out of every 5 T10Kb tapes they were staging for rewrite

- We had seen no unrecoverable errors in staging
- We store a *sha1* digest for each file in an Oracle db
- Wrote some *perl* code to stage our oldest tapes and found no errors in 600 TB of content staged
- Clearly there are other issues contributing to these errors

Archive Integrity Checker

- LOC contracted with a developer to write code to systematically check all the content and keep track of the status of each file
- Code runs via cron and checks content by date of ingest and last check
- Files that are to be staged are sorted by tape and then sorted by location on tape and staged in that order
- Oracle and IBM have alternatives to our homegrown solution


Oracle solutions

Verification flag (ssum)

- Enabled via software for a collection of files (filesystem, directory, file).
- Generates a 32 bit running checksum for file and stores in SAM's meta data (viewable via sls -D).
- File staged back to disk from tape and verified
 - Can be time consuming and slow down archiving
 - We turned it off
- Can be turned on to generate only and used when files are staged back from tape later.

Datapath integrity field

Oracle solutions - continued

T10-DIV

- A variation of the T10-DIF (Data Integrity Field) that adds a CRC to each data frame from the tape kernel driver to the tape drive
- Verifies the FC path to to tape drive and verifies each write to tape by reading afterward
- Requires Solaris 11 and SAM 5.3
- Can be used to verify the tape content without staging back to disk
- Oracle is working on a tape to tape migration that will use this information to validate the content read from tape during the migration

IBM HPSS solutions

- End to end check sums for data content integrity
 - User choice (ie SHA1, md5, etc)
- Tape to tape migration
 - Updates meta data with new tape location
 - Verifies using check sums
- IBM just released an LSI drive array that supports T10-DIF

- Packard Campus will be using T10-DIV by the end of the CY 2012 on our T10KC tapes.
- Verification flag will not be used
- Oracle TA (Tape Analytics) will be used to monitor our tape drives/libraries
 - Drive code upgrade to 7.70 or 8.01
 - need ACSLS 8.x for the 8.X drive code (not available for Solaris 11)
 - Purchase HBT card for library (additional memory)