Robert Fontana – Research Scientist, IBM systems and Technology Group

20 September 2012

How to store stuff at specified sizes and specified dates in the future?

Memory Landscape for TAPE, HDD, NAND Flash

- Industry Size
- Areal Density
- Volumetric Measures
- Options

PB Shipments -- TAPE, NAND, HDD -- Product Space

	YE2008	YE2009	YE2010	YE2011
HDD				
Units (HDDs millions)	540	557	652	620
PB Shipped (PB)	125000	200000	330000	335000
Areal Density (Gb/in ²)	380	530	635	750
Revenue (\$ billions)	34.0	34.0	33.0	33.5
\$/GB Shipped	0.272	0.170	0.100	0.100
NAND				
Units (2GBs millions)	1500	2715	5232	9326
PB Shipped (PB)	3000	5430	10464	18600
Areal Density (Gb/in ²)	200	280	330	550
Revenue (\$ billions)	10.0	12.1	18.5	21.5
\$/GB Shipped	3.33	2.23	1.77	1.16
LTO TAPE				
Units (Cart. Millions)	20	24	23	25
PB Shipped (PB)	10400	12165	15300	17800
Areal Density (Gb/in ²)	0.9	0.9	1.2	1.2
Revenue (\$ billions)	1.0	0.7	0.7	0.7
\$/GB Shipped	0.093	0.061	0.046	0.038

Large Consumer Base Supply Issues Consolidation Stable Prices in 2010,2011 Archive and Enterprise PB ~ 50,000 PB in 2012

Large Consumer Base Lithography Advances Manufacturing Investment Archive and Enterprise PB ~ <u>4,000 PB</u> in 2012

No Consumer Base Archive and Enterprise PB > <u>17,800 PB</u> in 2012

Storage Device Density Landscape – A History

- Sustained increases in the areal density of a technology is a measure of technology robustness
- For HDD and NAND, annual areal density increases of 40%, the norm until 2010, have decreased to the 20% range (bit endurance issues)
- For TAPE, annual areal density continue at a 40% annual increase

Volumetrics (Today) for HDD, NAND, TAPE

HDD (3 TB 3.5" Drive)

- -- Areal Density 730 Gbit/in²
- -- Media Density 2.4 Tb/in³
- -- Component Density 126 GB/in³

head/suspension disk

∐ 2 mm

NAND (0.5 TB 2.5" Form Factor Drive)

- -- Areal Density
- 550 Gbit/in² 6.7 Tb/in³
- -- Media Density 6.7 7 -- Component Density 121
- 1 mm
- 121 GB/in³

- thinned substrate
 thinned substrate
- thinned substrate
- thinned substrate

TAPE (1.5 TB LTO5 Cartridge)

- -- Areal Density 1.2 Gbit/in²
- -- Media Density 0.7Tb/in³
- -- Component Density 106 GB/in³

- HDD Scenario (20% per year density increase) Add platters to reach HDD capacity points
 - In 2012 the highest capacity 3.5" HDD platter is ~ 1 TB
 - An extra platter adds 1 disk (\$3) and 2 heads (\$6)
 - Changes in the 3.5" HDD form factor and/or closer disk spacing
 - An example
 - Today 3 TB HDD with 3 platters
 - Next Year 5 TB HDD with 4 platters and 20% areal density increase
- NAND Scenario (a minimum of 20% per year density increase) More chips per package, new SSD form factors
 - In 2012 the highest capacity NAND chip for <u>2 bits per cell</u> is 8 GB. The next logical chip size of 16 GB would require 16 nm lithography for 2 bits per cell or today's lithography at 3 bits per cell but with significant endurance loss
 - Apple uses a "gum stick" form factor for SSDs in the MacBook Air with 2x to 3x density improvement
 - There is an ongoing package revolution allowing for more chips per package
- TAPE Scenario (a minimum of 40% per year density increases)
 - Present LTO5 cartridge capacity is 1.5 TB
 - Match HDD capacity points with areal density
 - Increase tape length to exceed HDD capacity points (access time issues)

Summary

- HDD and NAND annual areal density increases slowing to ~ 20% with main limiter being cell size – lithography and thermal fluctuations
- TAPE annual areal density increases maintaining traditional roadmaps of ~ 40% with the possibility of greater density increases owing to large feature sizes
- HDD \$/GB will not decrease at past historical rates (see 2011, 2010)
- NAND \$/GB (chip) decreases will continue if 3 bit cell low endurance cycles are tolerated by the user
- TAPE \$/GB (cartridge) decreases will continue at historical levels
- Presently (2011), TAPE, HDD, and NAND are volumetrically equivalent at the SSD, HDD, or cartridge level.
- Future HDD, TAPE, and NAND components will stress volumetric improvements over area density improvements
- Future system adjustments
 - Accommodate lower endurance cycles in NAND
 - Accommodate shingled writing (almost like tape) in HDD for intermediate density improvements