Building Better Long-Term Archival Storage Systems

Ian F. AdamsEthan L. MillerMark W. StorerUC Santa CruzNetApp

Center for Information Technology Research in the Interest of Society

Baskir

How is archival storage used?

- Details of archival storage workload are important!
 - How often are data accessed (read & write)?
 - How dense are accesses?
 - Are there patterns in file accesses?
 - Are all accesses (users) equivalent?
- Why should we care?
 - Archival systems being designed around speculation and out of date information
 - Systems may be optimized for the wrong workload!
- Data is either out of date, unrelated, or nonexistent
 - Last tertiary storage studies were almost 2 decades ago
 - More recent workload studies are unrelated
 - Nobody has looked at modern archival use-cases

Contributions

Our work is bringing our knowledge of archival storage behavior up to date

• Our contributions:

- Examine common assumptions in archival storage
 in particular "write-once, read-maybe"
- Examine impact on current and future architectures
- Begin looking towards tools for future studies

Systems studied thus far

- Los Alamos National Laboratory
 - 55+ Million files, 1.3 PB
 - 13 months of daily FSstats histograms
- Washington State Digital Archives
 - 28 million web viewable records 10+ TB
 - 3 years of record metadata and user access logs
- California Department of Water Resources
 - 56,000 reports on water table data, 2.5 GB
 - 3 years of access and update logs

Prevalence of mass accesses

- Frequent mass accesses
 - Google accounts for 70% of 4000 water corpus retrievals
 - Integrity checking processes (not shown) account for 99% of retrievals to historical corpus
- Future migration converts "Read Maybe" to "Read Definitely"
 - New access API?

Prevalence of mass accesses

- Frequent mass accesses
 - Google accounts for 70% of 4000 water corpus retrievals
 - Integrity checking processes (not shown) account for 99% of retrievals to historical corpus
- Future migration converts "Read Maybe" to "Read Definitely"
 - New access API?

Google crawl

Other findings (in brief)

Surprisingly frequent file updates

Strong content locality within user sessions

- Limited content popularity system wide
 - i.e. limited per-record/file popularity
- Good data is very difficult to come by

Next steps

- Analyze new data
 - National Center for Atmospheric Research
 - Additional "public use" corpora
 - We're looking for volunteers who have access traces
- Apply findings to archival storage system design
 - Knowledge about access density / frequency
 - Batch vs. on-demand requests
 - Data grouping

Current work: DAWN

- Durable Array of Wimpy Nodes
- Long life, low usage of archival storage make cost considerations paramount
 - Magnetic media dominates due to low acquisition cost
- Consider storage class memory (flash, etc.)
 - High acquisition costs
 - Lower running costs and infrastructure needs
 - Physically robust
- We argue SCM should be considered for archiving
 - Can be competitive with magnetic media when using a selfmanaging architecture
 - Self management+low infrastructure needs+long life=lower TCO

