Media Archiving IT Challenges at the Library of Congress

National Audio Visual Conservation Center Packard Campus for Audio Visual Conservation http://www.loc.gov/avconservation/packard/

Media-related Archiving IT challenges

- Designing & implementing media-related IT technologies that are as standardized as possible
- Designing & implementing media production/migration systems that can work on a mass scale (10s to 100s of thousands of units per year)
- Designing & implementing data structures (files) that will last at least as long as the physical media they came from
- Begin to ingest Born Digital media files from media producers
 - They start as files, why shouldn't they come to us as files?
- Extending the life of physical data media: can we make at least one of our copies one that lasts decades longer?
 - Film lasts more than a century and can still be played in standardized machines: Can we do a version of that with data storage?
 - Lower the TCO of at least one of the copies?

Working On Technical Challenges

How do we maintain the benefits of IT economies of scale while meeting the long-term needs of media archiving?

MXF: Media eXchange Format

- ISO standard by SMPTE (Society of Motion Picture & Television Engineers) via the AMWA (Advanced Media Workflow Association)
- Standardized media file definition to allow a common file design to be used across multiple vendor platforms & usage designs
 - Promotes interoperability between vendors
 - Allows metadata & other essential associated data to be included within file
 - Not vendor-specific, lowering licensing costs & obsolescence issues (unlike .avi [Microsoft] & .mov [Apple Computer] file formats)
- 7 major flavors adapted for specific functional requirements:
 Operational Patterns (labeled "OP-##")
- Use-specific focused file definitions for common use requirements:
 Application Specifications (labeled "AS-#")
- Tightly defined definitions for specific implementations: 'shims'
 - For specific needs or implementations

MXF: Media eXchange Format

- Media production adopters:
 - CBS/Paramount TV
 - Disney/ABC
 - NBC Universal
 - Public Broadcasting Service
 - BBC
 - CBC
 - Deutsche Welle
 - Digital Cinema Initiative
 - AMC Entertainment
 - Regal Entertainment
 - 20th Century-Fox Studios
 - Paramount Pictures
 - Universal Pictures
 - Sony Pictures/Columbia Pictures
 - Walt Disney Company

- Media equipment vendor adopters:
 - Omneon
 - Harris
 - Front Porch Digital
 - AmberFin
 - OpenCube/EVS
 - DVS (Digital Video Solutions)
 - Dolby
 - Christie
 - Barco
 - Doremi
 - Qube Cinema

MXF: Media eXchange Format

- Archive-specific Application Specification (AS) being worked on currently by LOC, NARA and other partners
- Intended to address archives & libraries' needs to have enhanced metadata fields, associated essences and greater versioning abilities

AXF: Archive eXchange Format

AXF: Archive eXchange Format

- Candidate standard being worked on by SMPTE
- Develop a standardized file organization structure that is media agnostic and can be written across any type of data recording media without being adapted for media-specific requirements
 - Standardized metadata fields
 - Forward error correction (redundant data inserted in files to recover a complete copy without accessing an external 2nd or 3rd copy)
 - Media materials allow for error concealment & error correction under defined conditions
 - Cryptographic hash checksums: entire files and internal file elements
 - Agnostic to storage media: disk, tape, solid state, holographic, others????
- Now in drafting stages
- More details: www.smpte.org/standards
 - Look for TC-31FS30 committee

Media Longevity Studies

Media Longevity Studies

- How do we store data for longer periods of time?
- How do we recover data from media that are dozens if not hundreds of years old?
- Can we engineer better longevity of the media?
- Can we engineer better machines that last longer?
- Can we maintain designs that can be easily reproduced decades or centuries in the future?

Media Longevity Studies

Methods:

- Study current materials media and machinery
- Research new materials via materials sciences
- Look at previous experiences in error coding (IE 'entropy coding') and forward error correction (FEC) science
 - Well studied in the media production & transmission fields:
 - Used since the 1980s in digital audio and videotape
 - Version is built into MPEG-2 and DVB broadcast & satellite transport standards

How to apply it to non-transmission data storage technologies?

We're at the beginning....stay tuned!

Standardized Metadata Schemas

Standardized Metadata Schemas

- Develop standardized metadata schemas that can serve the specific needs of media archiving of all types
- Document them well and publish as open standards without licensing agreements
- Create a clear versioning scheme to allow for future growth and change without orphaning previous schemas

Questions?

Thank you

