Preservation Research and Testing – the science of cultural materials

Physical, Chemical and Optical Properties Labs

Dr. Fenella G. France, Preservation Research and Testing Division, Library of Congress

Focus on Non-Invasive Analytical Techniques

- Prioritizing risk to collections
 - Traditional (e.g. corrosive media)
 - Modern (e.g. sound format, fugitive media)
 - New at-risk areas (e.g. fugitive media, 21st century materials, sound recordings, unstable glass)
- Characterizing materials
 - Degradation mechanisms
 - Tracking change due to environment / treatments
- Scientific reference sample collection
- Scientific data infrastructure
 - Data fusion, data mining, storage, access

Hyperspectral Imaging

Fourier Transform Infrared Spectroscopy (FTIR)

Fiber Optic Reflectance Spectroscopy (FORS))

The "go-team"

Prioritizing and creating a structured approach to resources, time demands and complementary data to answer research questions *"active learning"*

Scientific Reference Sample Collection

Materials Types include Barrow Book Collection, magnetic tapes, parchment, papyrus, damaged books, ISR reference papers, ASTM 100-year Paper Aging Study papers, pigments, CDs, DVDs, fabrics, glass, fibers etc.

Materials Characterization Scientific Reference Samples: Development of spectral and spectroscopy databases of reference materials

Center for Library Analytical Scientific Samples (CLASS) Enhance non-destructive characterization Expansion of database to include deteriorated substrates / media *Changes from aging, treatments, environment*

Audio Tape Degradation – Sticking, Squealing, Shedding

Most common remediation: thermal baking **54°C** for 8-36 hours

	How do you decide when to bake a tape?	What do you do after baking?
User #1	Bake everything	Play it warm
User #2	Bake everything of known vintage	
User #3	No bake until proven sticky	Let it cool
User #4	No bake, ever	

Thermal Analysis – Differential Scanning Calorimetry

Glass transition point for polymers

Thermal Analysis – Differential Scanning Calorimetry Evidence of Thermal Transitions in "Sticky" Tape Layer Differences Observable in Thermal Analysis

Using material from separated layers: Low temperature Tg (15°C) in **oxide layer** "Bake" temperature transition in **base film**

Electron Microscopy – Tape "twins"

Electron Microscopy of Baked Tapes

Removed surface residues with gentle swab, analyzed by FTIR and compared to baked and unbaked oxide layer of same tape

Results suggestive of lubricant/plasticizers, NOT degradation from PU

Strongest peaks (1730, 1259, 1166 cm⁻¹) correlate to peaks found to decrease after baking (both here, and other studies)

Can we make a sticky tape?

Have tried artificial aging at various combinations of temperature and humidity:

80°C/80% 40°C/80% 40°C/10% 60°C/0%

...

Can break down a tape, but cannot reliably mimic a "sticky" tape

In collaboration with FujiFilm Japan

Analyses of stickiness and baking

<u>DSC thermal data</u> base film contributes to baking process

<u>Microscopy data</u> oxide layer shows visible restorative changes during baking

Water Contact Angle of Magnetic Media

Non-sticky

HIGH CONTACT ANGLE LOW CONTACT ANGLE LOW SURFACE ENERGY HIGH SURFACE ENERGY GOOD RELEASE, NON STICK PROPERTIES POOR RELEASE, POOR NON STICK PROPERTIES ptfecoatings.com Factors affecting contact angle: Surface roughness Surface chemistry KEY: SURFACE

Sticky

Challenges with Wax Cylinders

Taking a multipronged approach

Historical Records

Laboratory Synthesis

Chemical and Physical Testing

Edison Papers Project @ Rutgers: Digitized lab notebooks

Reproductions of Edison cylinder formulations

Examining metals content by ICP

All values in parts-per-million (ppm)

Organic compound analyses

Results showed no chemical change between original swab samples and new lab formulations

Coefficient of thermal expansion

Creation and destruction of "pseudocylinders"

Thermal cycle 100 °F to 0 °F (8-12x)

Lab trials of prototype cleaning solutions

- Acetonitrile and water solutions (1:3, 1:1, 3:1)
- 2.5% Tween 20, Triton X-100, or Tergitol 15-S-7

Lab trials of prototype cleaning solutions

Promising. But...

- Prototype solutions contained high acetonitrile for optimum cleaning, particularly during rinse
- Evaporative cooling could lead to rapid thermal change at surface leading to breakage
- Not comfortable with the inherent risk

"Custodians for future generations"

Acknowledgements

Preservation Research and Testing Division Staff, LC Esp[eciallyt Drs. Andrew Davis, Eric Monroe, and ACS SEED fellow 2018 Christine Folivi NAVCC Colleagues FujiFilm Japan

Fenella France frfr@loc.go