

Technology Roadmap Comparisons for TAPE, HDD, and NAND Flash: Implications for Data Storage Applications

Outline

- Business as Usual Areal Density Increase → 40% per Year
- Premise: The annual rate of areal density increases for TAPE will likely exceed the annual rate of areal density increases for NAND and HDD
 - TAPE bit cell is large and paths for scaling to higher bit densities exist
 - NAND bit cells and HDD Patterned Media bit cells are approaching nanoscale issues in minimum feature lithography requirements
 - NAND bit endurance or bit retention and HDD bit stability are approaching kT fluctuation issues driven by the small volume of the bit cells at high areal densities (< 1900 nm² bit cell area)
- Comment: TAPE, NAND, and HDD will continue to offer complementary storage solutions
- Implications for TAPE: TAPE volumetric density will increase, allowing for new tape opportunities in a more cost sensitive storage environment
- A Possible Annual Areal Density Growth Scenarios
 - ~ 20% for HDD
 - ~ 20% for NAND Flash
 - > 40% for TAPE

Outline NEW

- Areal density landscape for TAPE, HDD, NAND
- Bit cells
- Lithography and / or bit cell definition
- TAPE, NAND, HDD landscapes
- Areal density increase scenarios for the next 4 year period
- Conclusions

Storage Component Landscape

Three Components

- HDD ~ 500 GB capacity 630 million units/yr (large commodity base)

NAND Chip
 4 GB capacity
 4 billion units/yr (large commodity base)

LTO Tape Cartridge ~ 800 GB capacity
 24 million units/yr (<u>no commodity base</u>)

The Industries

	2010	2011		
HDD Revenue	\$33.5 B	\$33.5 B	٦.	Thailand Floods Industry Consolidation
HDD PB Shipped	330000 PB	330000 PB	 	
HDD \$/GB Shipped	\$0.10/GB	\$0.10/GB	ין	
NAND Revenue	\$18.5 B	\$21.5 B	1	Transition from 30 nm to 20 nm Lithography
NAND PB Shipped	10,400 PB	18,600 PB	}	
NAND \$/GB	\$1.77/GB	\$1.16/GB	יין	
TAPE LTO Cartridge Revenue	\$0.7 B	\$0.7B	1	Introduction of LTO5 Tape Generation
TAPE LTO Cartridge PB Shipped	15,300 PB	17,800 PB	 	
TAPE LTO Cartridge \$/GB	\$0.046/GB	\$0.038/GB]]	

Areal Density Overview (a moving target -- concentrate on YE 2011 values)

HDD (20% - 30%) / Year)

YE 2009 530 Gbit/in²
 YE 2010 635 Gbit/in²

– Mid 2011 750 Gbit/in²

HDD (3.5" Platter)

 $-750 \text{ GB} \rightarrow 1.0 \text{ TB}$

TAPE (40% / Year)

– Mid 2008 1.0 Gbit/in²

- Mid 2010 1.2 Gbit/in²

- Mid 2011 3.2 Gbit/in²

TAPE (LTO like Cartridge)

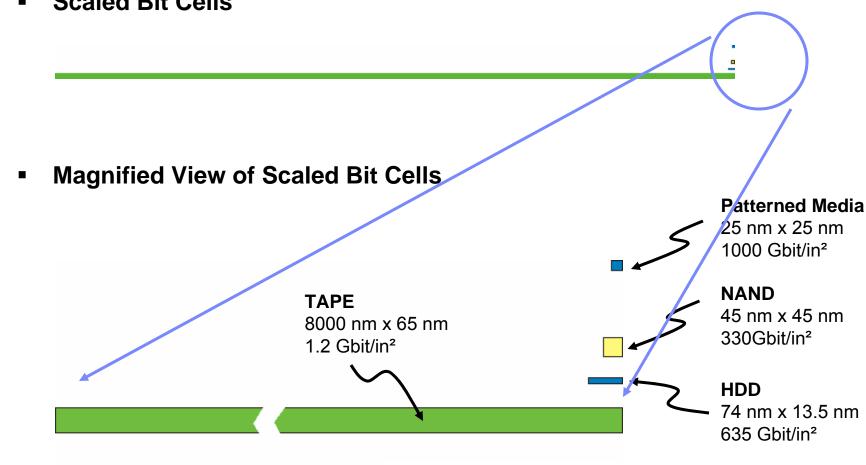
- 1.5 TB → 4.0 TB

NAND (40% / Year)

- Mid 2008 200 Gbit/in²

- Mid 2010 330 Gbit/in²

- Mid 2011 550 Gbit/in²


NAND (Chip)

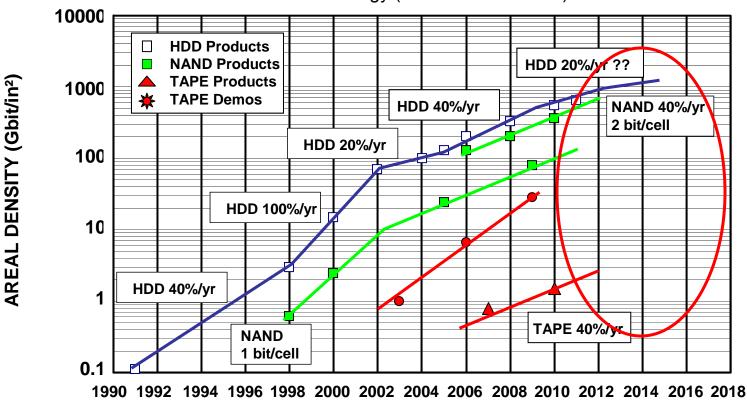
 $-8 \text{ GB} \rightarrow 8 \text{ GB}$ with 40% less area)

Storage Bit Cells and Extendability

Scaled Bit Cells

Storage Device Density Landscape – A History

HDD

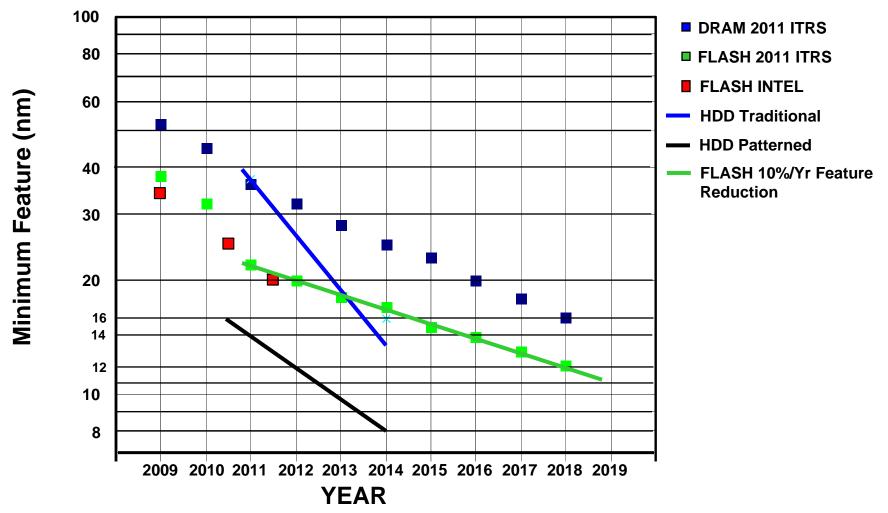

1998 – 2002 density increases at 100% per year (GMR)

TAPE

Sustained 40% density increases with demos showing potential for greater increases

NAND

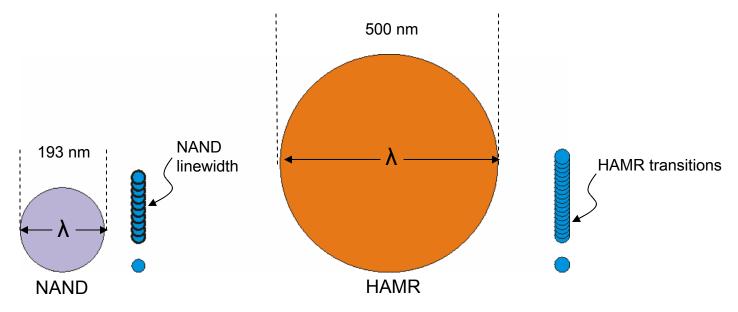
2005 -- transition to 2 bit/cell technology (endurance sacrifice)


Bit Cell Implications for 40% Annual Areal Density Increases

TECHNOLOGY METRIC	2010	2014 (40% / Yr)	
<u>TAPE</u>			
Areal Density	1.2 Gbit / in ²	4.8 Gbit / in ²	
Bit Length	8000 nm	2000 nm	
Bit Width	65 nm	65 nm	
Minimum Feature	4000 nm	1000 nm	
<u>HDD</u>			
Areal Density	635 Gbit / in ²	2500 Gbit / in ²	
Bit Length	74 nm	19 nm	
Bit Width	13.5 nm	13.5 nm	
Minimum Feature	37 nm	10 nm	
NAND Flash			
Areal Density	330 Gbit / in²	1300 Gbit / in ²	
Bit Length	45 nm	20 nm	
Bit Width	45 nm	20 nm	
Minimum Feature	25 nm	12 nm	

Lithography Roadmaps

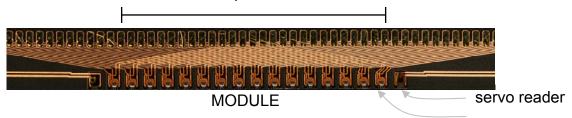
- Minimum feature typically reduced by 12% per year
- Intel/Micron has consistently exceeded ITRS goals



NAND and HAMR Optics -- Today

- NAND uses 193 nm wavelength light to resolve 20 nm features
 - Phase shift masking

 - Immersion lithography
 Double exposure at 2X line pitch
 - Chemically amplified resists
- HAMR uses ~ 500 nm wavelength light to resolve 100 nm features today and 35 nm features for 2 Tbit/in² in the 2014 time frame
 - Waveguide propagation
 - Waveguide termination with aperture feature (minimum feature)
 - Near field thermal effects
 - Media layer heat sinking

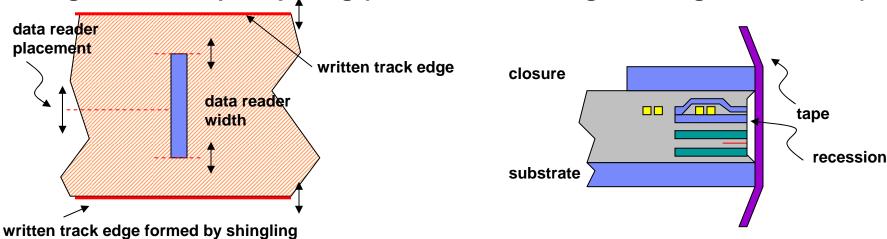


TAPE Landscape – 1.5 TB LTO-5 Tape Cartridge

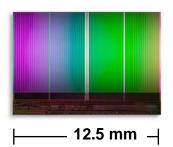
- Tape data storage capacity achieved using 840 m tape length, 12.8 mm wide, and 6.4 um thick
 - Tape surface area in a cartridge (10.5 x 10⁶ mm²) is equivalent to 148 12" Si wafers or 1736 3.5" disk surfaces
 - Some surface area utilized for edge guards, servo tracks, leading and trailing tape end lengths leading to surface storage efficiencies of ~ 65%
- 1.5 TB LTO-5 Cartridge Details
 - Areal Density (Maximum)
 - **Total Tracks**
 - Trackwidth
 - Bit Length
 - TPI, BPI

 - Memory Cell Area (F²)

- → 1.2 Gbit/in² (0.72 Gbit/in² average density)
- **→** 1280
- → 8100 nm or 8.1 um
- → 65 nm (Bit Aspect Ration = 125!!)
- → 3.1 KTPI, 385 KBPI
- Read Width/Minimum Feature → ~ ½ Trackwidth, ~ 4.0 um
 - → ~ 0 03F² III
- The Head 16 tracks, 2 servo elements



- Media -- Recording demonstrations suggest that tape areal densities in excess of 25 Gb/in² can be supported (20X). SNR is the issue
- Head -- The transition to GMR based sensors provides path for maintaining amplitude as trackwidth decreases and present trackwidths and MR widths in the 4 um range are 200X larger than present IC minimum features (20 nm); lithography limits are non issues
- Bit Cell -- The volume of the bit cell is large so kT fluctuations are minimal and bits are stable. TAPE heads use proven HDD technology of 12 years ago.


CAVEATS

- Flexible media and track following
- Large "head tape" spacing (i.e. recession changes during head lifetime)

8 GB 20 nm IM Flash

Chip Area

- →118 mm² (12.5 mm x 9.5 mm)
- Active Memory Area
- →71 mm² (63% efficiency)
- Minimum Feature (F)
- → 20 nm

- Memory Cell Area
- →1109 nm²
- Memory Cell Area
- → 2.8 F² (not 2 F²!!!)
- Local Areal Density
- → 560 Gb/in²
- NAND Scenario 10%/year minimum feature decrease, \$1500 cost per 12" wafer

	2010	2011	2013	2015 (?)
Device Capacity	8 GB	8 GB	16 GB	32 GB
Minimum F	25 nm	20 nm	16 nm	12.5 nm
Areal Density	330 Gbit/in²	550 Gbit/in²	660 Gbit/in²	1330 Gbit/in²
Devices / 300 mm Wafer	364	522	364	364
TB on 300 mm Wafer	2.9 TB	4.2 TB	5.8 TB	11.2 TB
\$ / GB at Wafer Level	\$0.52	\$0.36	\$0.26	\$0.13

What could change? Transition to 3 bit per cell (8 voltage states) design. There is a reason why Intel Micron did not do this at the 25 nm node. 3D options but with larger features.

- Platter capacity (GB) for a 3.5" disk ~ 1.2 to 1.4) X areal density system
 - → 635 Gbit/in² areal density supports 750 GB platter
 - → 720 Gbit/in² areal density supports 1000 GB platter
- 750 GB platter details
 - Areal Density (Maximum)
 - Trackwidth
 - Bit Length
 - TPI/BPI

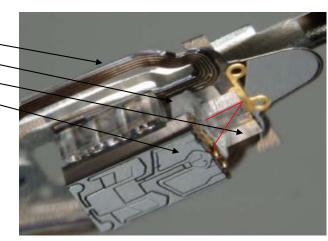
 - Memory Cell Area

- → 635 Gbit/in²
- → 74 nm
- → 13.5 nm
- → 338 KTPI, 1850 KBPI
- Minimum Feature F
 → 37 nm (MR sensor width)
 - → 4.0 F²
- Continued 40% annual areal density increases will eventually require minimum features sizes for the MR sensor with smaller dimensions than semiconductor roadmap projections. *Fortunately MR sensors* are isolated structures.
- The HDD Industry is in transition and anticipate density doubling every 5 years, i.e. 18% per year with the eventual introduction of patterned media and / or heat assisted recording

HDD Landscape – Two Strategies

- Media patterning strategies rely on introduction of imprint technology, a semiconductor roadmap strategy for 2014
 - E-beam lithography at 1X for master stencils
 - Patterning/Planarization/Stencil development and infrastructure → COST and TIME

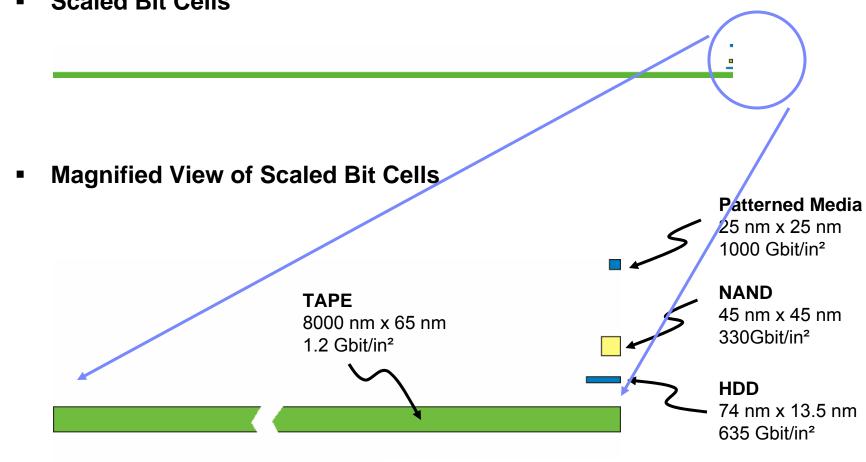
suspension


mirror reflector

laser

slider

- Major system changes to accommodate bit location and shingle writing
- Energy assisted strategies must define trackwidths, ~ 2X MRw, using heat, by adding additional components onto the head slider
 - New media
 - Thermal reliability for media overcoat and heat transducer
 - Laser supply chain
- Any new technology must be sustainable in the 2.5 Tbit/in² environment



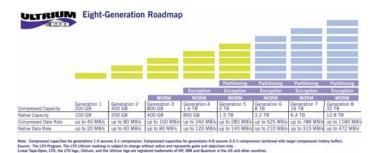
M. Re, "Has HAMR reached a critical mass", The Information Storage Industry Consortium Symposium on Alternative Storage Technologies, April 2009, www.insic.org

Storage Bit Cells and Extendability

Scaled Bit Cells

Areal Density Scenarios relative to 2014

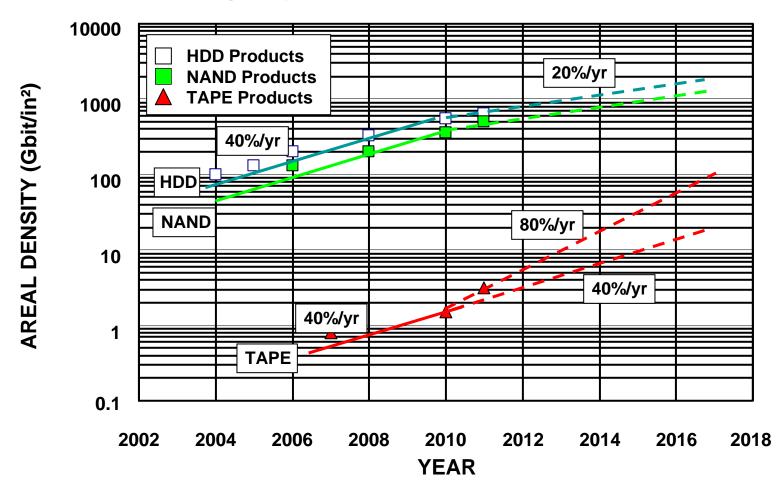
HDD


- Conservative: 20% density increases achievable
- Aggressive: 30% density increases are challenging (shingling interim solution)

NAND Flash

- Conservative: 20% density increases are achievable given the lithography roadmap strategies project reducing feature size 10% annually
- Aggressive: Sustained 30% density increases are difficult given the conventional understanding of lithography roadmaps and optical processing tooling strategies.

TAPE


- Conservative: 40% density increases achievable with anticipation of following the LTO Roadmap presently at Generation 5
- Aggressive: 80% density increases are possible since the needed transducer technology presently exists in the HDD environment but "mechanical" issues related to positioning, wear, and tape stability must be addressed – not NANOSCALE issues

Annual Areal Density Growth Rate Scenarios

- HDD Transition to New Technology, Sensor Output, Lithography
- NAND Flash Lithography and Endurance
- TAPE No Lithography Issues, Mechanical Realities

Density Increases

- Tape → > 40% per year building on HDD existing technology, no nano-scale issues
- HDD → 20% per year requiring <u>revolutionary</u> technologies
- NAND → 20% per year with evolutionary lithography
 - → > 20 % per year with low endurance multi-bit cells

TAPE differences relative to NAND and HDD

- Bit cell is 200X larger → thermal kT fluctuations do not impact endurance / bit stability
- Media thickness is 200X thinner → comparable volumetric densities at component level
- Lithography requirements not dependent on semiconductor roadmap innovations

Numbers

- Today's lithographic features are 20 nm; achieving 16 nm is difficult for NAND and HDD
- Areal Densities: HDD ~ 730 Gbit/in2, NAND ~ 550 Gbit/in2, TAPE ~ 2 Gbit/in2
- NAND cost is 10X greater than HDD cost. HDD cost is 2.5X greater than TAPE cost
- Moore's Law, i.e. capacity doubling per unit area every two years (40% per year), will change for NAND and HDD