Trading CPU Cycles for Gigabytes: Data Reduction Approaches for Archival Storage

Mike Davis

Dell | Ocarina
Collections

Preserve and keep available

Budget for Disk

Preservation only

Throw it away

Time
A new type of HDD with 2-3x the capacity at the same price

The ability to reduce WAN replication traffic by 2-3x

The ability to reduce platform migration time by 2-3x

YMWV
Data Reduction is...

Dedupe = Eliminating redundant data, within an object or across objects

Compression = Using math to predict data stream patterns
Some Ways to Shrink Data Better

PDF = Deflate \{ text, images, other \}

LZ77 \{ text \} + JPAQ \{ images \} + BBB \{ other \}
5x Better Utilization is Worth A Serious Look
It’s Not Just About Better Algorithms

1. Shrink data well
2. The shrinking needs to happen somewhere appropriate
 - As part of the storage layer
 - A host properly sized for the workload
 › CPU cores for compression, RAM for dedupe
 - Running it: Management, resilience, and policies
3. Transparent to applications and end-users
 - Don’t change file system metadata (2/18/80 rule)
 - Use file mover APIs where available
 - Performance asymmetry favoring read operations
4. Needs to introduce minimal new risk
 - Self describing wrappers
 - Run-anywhere decoding
 - Market reliability: vendor lifecycle, escrow, etc
Applying **Lossy** Compression to Preservation?

An “Object Fidelity Lifecycle”?

- **Scanned Pages**
 - TAR{TIF}
 - 1x

 ➔ 2 years of inactivity

 ➔ **Annotated OCR**
 - PDF
 - 1/100x

 ➔ 2 years of inactivity

 ➔ **Text**
 - LZ{TXT}
 - 1/1000x
Thank you!