The Library of Congress
Storage Architectures for Digital Preservation

Module 4: Moving and Distributing Data
Requirements for Moving Data and Distributing Data

- Move significantly large amounts of data M TB/hour ($M > 2$)
- Heterogeneity i.e. move data across vendor arrays
- Move data across distance
- Data integrity checks after migration of data
- Moving data should not impact performance of servers/arrays
- Seamless migration of data – no host agents, no re-wiring etc.
Trends in SAN-based Data Movement

- Move Large Amounts of Data
 - Purpose-built line cards with SCSI intelligence that reside in SAN Directors that can move up to 4TB/hour of data between storage arrays
- Move Data Across Distance
 - SAN-like performance over distance with SCSI Acceleration
 - Encapsulation of FC in IP protocols for distance connectivity
 - Encryption and compression
- Heterogeneity
 - Because SAN Directors operate at the SCSI level and have visibility into storage arrays from different vendors, it can provide heterogeneous data movement
- Data Integrity Checks
 - Because SAN Directors have high performance line cards with SCSI intelligence, they can perform data integrity checks to ensure data has not changed during the migration process
- Seamless
 - SAN Directors have the intelligence to migrate data between arrays without any host agents, no re-wiring, and no re-configuration.
An Example of SAN-based Data Movement: Cisco MDS Data Mobility Manager (DMM)

- Online migration of heterogeneous arrays
- Move up to 4 TB of data in 1 hour
- Simultaneous migration of multiple LUNs
- Unequal size LUN Migration
- Rate adjusted migration
- Verification of migrated data (integrity)
- Secure erasure of old data
- Dual fabric support for HA
- Requires no SAN re-configuration or rewiring
- CLI and wizard-based management with Cisco Fabric Manager

Utilizes MSM-18/4 or Storage Services Node (SSN-16)