Building Better Long-Term Archival Storage Systems

Ian F. Adams Ethan L. Miller Mark W. Storer
UC Santa Cruz NetApp
How is archival storage used?

- Details of archival storage workload are important!
 - How often are data accessed (read & write)?
 - How dense are accesses?
 - Are there patterns in file accesses?
 - Are all accesses (users) equivalent?

- Why should we care?
 - Archival systems being designed around speculation and out of date information
 - Systems may be optimized for the wrong workload!
 - Data is either out of date, unrelated, or nonexistent
 - Last tertiary storage studies were almost 2 decades ago
 - More recent workload studies are unrelated
 - Nobody has looked at modern archival use-cases
Contributions

- Our work is bringing our knowledge of archival storage behavior up to date

- Our contributions:
 - Examine common assumptions in archival storage
 - in particular “write-once, read-maybe”
 - Examine impact on current and future architectures
 - Begin looking towards tools for future studies
Systems studied thus far

- **Los Alamos National Laboratory**
 - 55+ Million files, 1.3 PB
 - 13 months of daily FSstats histograms

- **Washington State Digital Archives**
 - 28 million web viewable records, 10+ TB
 - 3 years of record metadata and user access logs

- **California Department of Water Resources**
 - 56,000 reports on water table data, 2.5 GB
 - 3 years of access and update logs
Prevalence of mass accesses

- Frequent mass accesses
 - Google accounts for 70% of water corpus retrievals
 - Integrity checking processes (not shown) account for 99% of retrievals to historical corpus
- Future migration converts “Read Maybe” to “Read Definitely”
 - New access API?
Prevalence of mass accesses

- Frequent mass accesses
 - Google accounts for 70% of water corpus retrievals
 - Integrity checking processes (not shown) account for 99% of retrievals to historical corpus
- Future migration converts “Read Maybe” to “Read Definitely”
 - New access API?
Other findings (in brief)

• Surprisingly frequent file updates

• Strong content locality within user sessions

• Limited content popularity system wide
 • i.e. limited per-record/file popularity

• Good data is very difficult to come by
Next steps

• Analyze new data
 • National Center for Atmospheric Research
 • Additional “public use” corpora
 • We’re looking for volunteers who have access traces

• Apply findings to archival storage system design
 • Knowledge about access density / frequency
 • Batch vs. on-demand requests
 • Data grouping
Current work: DAWN

- **Durable Array of Wimpy Nodes**
 - Long life, low usage of archival storage make cost considerations paramount
 - Magnetic media dominates due to low acquisition cost
 - Consider storage class memory (flash, etc.)
 - High acquisition costs
 - Lower running costs and infrastructure needs
 - Physically robust
 - We argue SCM should be considered for archiving
 - Can be competitive with magnetic media when using a self-managing architecture
 - Self management + low infrastructure needs + long life = lower TCO