

CHECKING YOUR DIGITAL CONTENT
AN NDSA PUBLICATION

Icons for Archive and Checksum, Designed by Iconathon Los Angeles, California, US 2013. Public Domain

2014 What is Fixity, and When Should I be Checking It?

Authors
• Paula De Stefano, New York University
• Carl Fleischhauer, Library of Congress
• Andrea Goethals, Harvard University
• Michael Kjörling, Independent Researcher
• Nick Krabbenhoeft, Educopia Institute
• Chris Lacinak, AV Preserve
• Jane Mandelbaum, Library of Congress
• Kevin McCarthy, National Archives and Records Administration
• Kate Murray, Library of Congress
• Vivek Navale, National Archives and Records Administration
• Dave Rice, City University of New York
• Robin Ruggaber, University of Virginia
• Trevor Owens, Library of Congress
• Kate Zwaard, Library of Congress

A joint project of the National Digital Stewardship Alliance
Standards & Practices and Infrastructure working groups.

 This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Persistent URL: http://hdl.loc.gov/loc.gdc/lcpub.2013655117.1

http://creativecommons.org/licenses/by/3.0/
http://hdl.loc.gov/loc.gdc/lcpub.2013655117.1

Checking Your Digital Content

How do I verify that a file/object has not changed over time or during transfer processes?
This fundamental goal of digital preservation is attained by establishing and checking the
“fixity” or stability of digital content. At this point, many in the preservation community know
they should be checking the fixity of their content, but how, when and how often? The need for
guidance on fixity and audit and repair strategies was specifically noted in The National
Agenda for Digital Stewardship (http://www.digitalpreservation.gov/ndsa/nationalagenda/).
This document aims to help stewards answer these questions in a way that makes sense for their
organization based on their needs and resources.

About The National Digital Stewardship Alliance
Founded in 2010, the National Digital Stewardship Alliance (NDSA) is a consortium of
institutions that are committed to the long-term preservation of digital information. NDSA’s
mission is to establish, maintain, and advance the capacity to preserve our nation's digital
resources for the benefit of present and future generations. The NDSA comprises over 160
participating institutional members. These members come from 45 states and include
universities, consortia, professional societies, commercial businesses, professional associations,
and government agencies at the federal, state, and local level. NDSA organizations have
proven themselves committed to long-term preservation of digital information. To learn more
about the NDSA: http://www.ndsa.org.

Defining Fixity and Fixity Information

Fixity in this context is the property of a digital file or object being fixed or unchanged. In this
sense, it is synonymous with bit-level integrity. Fixity information offers evidence that one set of
bits is identical to another. The PREMIS data dictionary defines fixity information as
"information used to verify whether an object has been altered in an undocumented or
unauthorized way." The most widely used tools for creating fixity information are checksums
(like CRCs) and cryptographic hashes (like MD5 and various SHA algorithms), but there are
other methods such as expected file size and file count that provide basic fixity information.
The instruments for creating fixity information are explained later in this document, but before
getting to those, it is worth pausing to discuss some of the limitations of fixity information and
explain the diverse range of reasons to collect, check, maintain, and verify fixity information.

Limits of Fixity and the Uses of Fixity Information

Generating and logging fixity information to support the repair of digital objects is necessary
but not sufficient for ensuring long-term access to digital information. The information must be
put to use, in the form of scheduled audits of the objects against the fixity information.
Additionally, replacement or repair processes must be in place. Ideally these will have been
tested before being needed. All of this is critical for bit-level preservation, but ensuring fixity
does not mean that the object is or will be understandable. Long term access is also contingent
on one’s ability to make sense of and use the contents of the file in the future.

Reasons to Collect, Check, Maintain, and Verify Fixity Information
Fixity information helps answer three primary questions:

• Have you received the files you expected? When fixity information is provided with
objects upfront, it can be used to validate that you have received what was intended
for the collection.

Page 1

Checking Your Digital Content

• Is the data corrupted or altered from what you expected? Once you have generated
baseline fixity information for files or objects, comparing that information with future
fixity check information will tell you if a file has changed or been corrupted.

• Can you prove you have the data/files you expected and they are not corrupt or
altered? By providing fixity information alongside content, you enable your users to
verify that what they have is identical to what you say it should be. This supports
assertions about the authenticity and trustworthiness of digital objects.

Fixity information has other uses and benefits as well.

• Support the repair of corrupt or otherwise altered digital files or objects: If you have
multiple copies of digital objects, you can discern which copy is correct and then
replace the corrupted digital files or objects.

• Monitor hardware degradation: If checks against fixity information for a set of objects
begin fail at high rates, it can be an indication of media failure. This should be
considered a supplement to hardware-specific monitoring of storage components.

• Assure confidence when providing someone with a copy of an item, or a segment
or portion of an item, that the file or object is unchanged: By comparing fixity
information on a file or object against recorded fixity information you can be sure that
what you are providing is exactly what you assert it should be.

• Permit an update to a portion of a content file or object while being able to
determine that the "other" portion is unchanged: If you maintain very granular fixity
information you can use comparisons and revisions of that information to be sure that
other parts of it are not affected.

• Meet requirements or best practice guidelines such as ISO 16363/TRAC and the
NDSA Levels of Digital Preservation.

• Support the monitoring of production or digitization processes: Generating and
checking fixity information across complex processes provides a means to monitor
content integrity as content is moved and custody is transferred.

• Document provenance and history: By maintaining and logging fixity information, you
can provide evidence of the integrity of content across the time objects have been
under stewardship.

• Help diagnose possible systemic or human error in the lifecycle management of
preserved content: Regularly computing fixity information and comparing it with initial
fixity information provides continual documentation of changes or damage to files. As
such, the process of checking fixity works to help surface issues related to operator
error or system problems.

General Approaches to Fixity Check Frequency
The following list describes a wide range of approaches to checking the fixity of digital
content, including those that are built into storage systems, those that can be automated through
scripts and applications, and those that might involve manual workflows.

Page 2

Checking Your Digital Content

• Generating/Checking Fixity Information on Ingest: It is important to check the fixity
of content transferred to you when you bring it under your stewardship. Whenever
possible, it’s ideal to encourage content providers or producers to submit fixity
information along with content objects. You can only provide assurance about the fixity
of content overtime once you have initial fixity values, thus it is imperative to document
fixity information as soon as possible. If fixity information isn’t provided as part of the
transfer, you should create fixity information once you have received the materials.

• Checking Fixity Information on Transfer: Transferring data from one storage system
to another is a potential point at which your digital content could be damaged. As such,
it is critical to check the fixity of your content whenever it is moved. Assuming you have
additional copies of your data, you can use any failures as an opportunity to recover
or repair by checking any files or objects that show up as not matching their fixity
values against the fixity values for other copies. Note, some file copy applications, like
Robo-copy, perform check fixity or can be configured to do so automatically as part of
transfer workflows.

• Checking Fixity at Regular Intervals: In addition to checking fixity before and after
transfer, collections of digital files and objects should be checked on a regular basis.
There are a range of systems and approaches focused on checking the fixity values of
all objects at regular intervals. This could be monthly, quarterly, or yearly for example.
The more often you check, the more likely you are to detect and repair errors.

• Building Fixity Checking into Storage Systems: Some storage systems have fixity
built into the system so that data is regularly checked. Some systems support per-file
checksums on tape and, with new tape technologies, per-block checksums can be
validated on tape systems without reading the data back to the host. Some file systems
(such as ZFS) compute block level fixity information on a regular basis. However, file
system checksumming will not log or help to fix issues that occur through the file system;
s. As a result, even with such file systems, separate fixity data will still be needed to
fully ensure changes to content (including individual file deletion) can be detected. File
system level checksums can, however, be used as one indicator to detect (and, with
redundancy available, automatically recover from) storage media degradation.

• Fixity Checking for Process Monitoring: For certain classes of content -- there are
notable examples in the realm of digital audio and video -- fixity information supports
process or production monitoring. For example, checksums on individual data blocks
can enable stewards to know how extensive any digital damage is and where it is
located. This information can inform further attempts to get a proper read from a
medium under adjusted circumstances in hopes of producing a more accurate data
transfer.

• Fixity Checking on a Segment or Portion of a File when that segment is to be
provided to an end user or when other portions of the file are to be changed.
Examples of this implementation include checksumming the encoded audio data within
an audio file or individual frame-level checksums for video files.

Page 3

Checking Your Digital Content

Considerations for Fixity Check Frequency
You might now ask yourself, why doesn’t everybody just run fixity checks and compare fixity
information for all their content at fixed intervals? For answers to that question, we have to
examine resource constraints and, in some cases, lack of fixity support.

• Storage Media: Doing fixity checks typically increases the usage of the media and of
the mechanical devices that read and handle the media. For some media, usage may
be a factor contributing to the projected failure rate of the media.

• Throughput: Your rate of fixity checking is going to be dependent on how quickly you
can run the checks, the complexity of your chosen fixity instrument, and how much of
your resources (e.g., CPU, memory, bandwidth) can be used for this operation. This can
become a choke point as the amount of digital content increases but the infrastructure
to perform the checks stays the same. In a situation like this, the fixity checking activities
can adversely affect other important functions like delivery of the content to users.

• Number and Size of Files or Objects: Different resource requirements emerge as the
scale of digital files and objects increases both in number and size.

• Redundancy Level in Content and Process: Depending on your system design, you
may want to have different practices for checking fixity on redundant copies. For
example, if the fixity is already being checked for the primary and secondary copies
on a regular basis, you might decide that you don’t need to check the tertiary copies as
often. Similarly, it often makes sense to have different practices for files that serve as
preservation masters than for files that serve as derivatives or access copies.

• Assurance from Third Party, like a Cloud Storage Provider: Instead of running your
own checks, you may be in a situation to trust the claims of a third party about their
persistent checking of the copies they maintain in their system. It is important to
understand the details of what a cloud provider is supporting and how often and how
detailed fixity checks are done.

• Covered at the File System or Object System Level: If the file or object system itself
performs frequent checks at the block level you may not need to be as concerned with
bit rot as a threat to fixity. For example, file systems like ZFS maintain and check block
level fixity information which can be automatically used to support the repair of data
that is damaged through silent data corruption (assuming there is only one hardware
corruption event at a time). Importantly, maintaining and checking fixity information
separate from this automated process is invaluable in offering further confidence and
assurance of fixity.

Page 4

Checking Your Digital Content

Characteristics of Common Fixity Instruments
The table below presents some basic information on a range of instruments that are commonly
considered for creating fixity information. Each instrument takes different levels of effort and
resources to use and results in varying degrees of detail and quality of the fixity information
they generate.

Fixity
Instrument

Definition Level of Effort and Return on Investment

Expected File
Size

File size that differs
from the expected
can be an indicator
of problems, for
example [by
highlighting] zero
byte files

Low level of effort and low level detail. File
size is auto-generated technical metadata
that can be viewed in Windows Explorer or
other common tools.

Expected File
Count

File count that differs
from the expected
can be an indicator
that files are either
added or dropped
from the package.

Low level of effort and low level detail. File
count is auto-generated technical metadata
that can be viewed in Windows Explorer or
other common tools.

CRC Error detection code,
typically used during
network transfers.

Low level of effort and moderate level of
detail. CRC function values, which are
variable but typically 32 or 64 bit, are
relatively easy to implement and analyze.

MD5 Cryptographic hash
function

Moderate level of effort and high level of
detail. CPU and processing requirements to
compute the hash values are low to moderate
depending on the size of the file. The output
size of this hash value is the lowest of the
cryptographic hash values at 128 bits.

SHA1 Cryptographic hash
function

Moderate level of effort, high level of detail,
and added security assurance. Due to its
higher 160-bit output hash value, SHA-1
requires more relative time to compute for a
given number of processing cycles CPU and
processing time than MD5.

SHA256 More secure
cryptographic hash
function

High level of effort, very high level of
detail, and added security assurance. With
an output hash value of 256 bits, SHA-256
requires more relative time to compute for a
given number of processing cycles CPU and
processing time than SHA-1.

Page 5

Checking Your Digital Content

Verifying auto-generated metadata such as expected file counts and file size can provide a
simple accessible first line of inquiry into the health of the digital objects, both as individual
units and an aggregate bundle, and can be used in all situations in combination with other
instruments.

Network protocols such as ethernet, SAS, fiber channel, and others have low-level CRCs built
into the hardware protocol. The ANSI T10 PI standard is used in addition to the standard
channel CRCs for an added level of protection and detection in hardware interfaces. CRCs are
also used often on the intra-file level.

For a given fixity instrument, the harder it is to find two objects that result in the same fixity
information, the more “collision resistant” that instrument is. This is important mostly for
preventing the concealment of intentional changes to objects. For example, expected file size
and expected file count are extremely vulnerable to collision: it is very easy for someone to
replace an object with one that matches in file size. It’s also possible (although unlikely) for an
unintentional change (such as corruption or human error) to result in an object with the same
fixity information for instruments that have low collision resistance. Of the fixity instruments
described above, the cryptographic hash functions (MD-5, SHA-1, and SHA-256) are the most
collision resistant; SHA-256 is recommended for applications where security is important.
However, performing fixity checking and replacing damaged objects is critical for any
preservation system, and using any fixity instrument is much better than none at all. Note that
as the level of security of the hash function increases, so do the time and resources needed to
compute.

Where to Store and Reference Fixity Information
Where to store fixity information depends on the situation. Here are some examples of places
you might store fixity data to accomplish different objectives.

• In object metadata records: In many cases, you will want to record some file or object
fixity information wherever you store and manage the metadata records. These
metadata records are actually stored as discrete files or in databases. This is
particularly useful for maintaining originally submitted or generated fixity information
as part of the long-term object metadata.

• In databases and logs: For checks you run at given intervals you may not want to be
constantly adding to your object metadata records. In this case, it makes sense to keep
running fixity information in databases and logs that you can return to when needed.

• Alongside content: It’s often ideal to have fixity information right alongside the content
itself. That way, if you have problems with other layers in your system, or want to
transfer some set of objects, you still have a record of previous fixity values alongside
your content. For example, the BagIt specification includes a requirement for a hash
value for the bagged content alongside the content. Similarly, some workflows involve
creating *.md5 files, which are simply text files with the md5 hash, named identically to
the file it refers to, but with an additional .md5 extension.

• In the files themselves: When a checksum is for a portion of a file, it may make sense
to store the information directly in the file. Note that this only makes sense when storing
sub-file fixity information within a file. Adding fixity information for an entire file to the
file itself changes the file and therefore changes its fixity value.

Page 6

Checking Your Digital Content

Further Reading
• Hashing Out Digital Trust. Kate Zwaard.

http://blogs.loc.gov/digitalpreservation/2011/11/hashing-out-digital-trust/

• Fixity Checks: Checksums, Message Digests and Digital Signatures. Audrey Novak.
http://www.library.yale.edu/iac/DPC/AN_DPC_FixityChecksFinal11.pdf

• The NDSA Levels of Digital Preservation: An Explanation and Uses. Megan Phillips,
Jefferson Bailey, Andrea Goethals, and Trevor Owens.

 http://www.digitalpreservation.gov/ndsa/working_groups/documents/NDSA_Levels_
Archiving_2013.pdf

• Authenticity of Electronic Federal Government Publications. Kate Zwaard and Lisa

LaPlant.
http://www.gpo.gov/pdfs/authentication/authenticationwhitepaper2011.pdf

• Reconsidering the Checksum for Audiovisual Preservation. Dave Rice.
http://dericed.com/papers/reconsidering-the-checksum-for-audiovisual- preservation/

• What’s the Real Impact of SHA-256?. A Comparison of Checksum Algorithms. Alex
Duryee.
http://www.avpreserve.com/papers-and-presentations/whats-the-real-impact-of-sha-
256/

Information About Relevant Standards and Specifications
• PREMIS Data Dictionary: http://www.loc.gov/standards/premis/v2/premis-dd- 2-

2.pdf

• PREMIS Conformance:
http://www.loc.gov/standards/premis/premisConformance_v4.pdf

• BagIt Specification: http://www.digitalpreservation.gov/documents/bagitspec.pdf

• MD5: http://en.wikipedia.org/wiki/MD5; https://tools.ietf.org/html/rfc1321

• SHA-1: http://en.wikipedia.org/wiki/SHA-1;
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

• SHA-256: http://en.wikipedia.org/wiki/SHA-2;
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf

• Cyclic redundancy check (CRC):
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

• Standards for SCSI interfaces: http://www.t10.org/

• SMART monitoring for storage drives: http://en.wikipedia.org/wiki/S.M.A.R.T.

Page 7

http://blogs.loc.gov/digitalpreservation/2011/11/hashing-out-digital-trust/
http://www.library.yale.edu/iac/DPC/AN_DPC_FixityChecksFinal11.pdf
http://www.digitalpreservation.gov/ndsa/working_groups/documents/NDSA_Levels_Archiving_2013.pdf
http://www.digitalpreservation.gov/ndsa/working_groups/documents/NDSA_Levels_Archiving_2013.pdf
http://www.gpo.gov/pdfs/authentication/authenticationwhitepaper2011.pdf
http://dericed.com/papers/reconsidering-the-checksum-for-audiovisual-%20preservation/
http://www.avpreserve.com/papers-and-presentations/whats-the-real-impact-of-sha-256/
http://www.avpreserve.com/papers-and-presentations/whats-the-real-impact-of-sha-256/
http://www.loc.gov/standards/premis/v2/premis-dd-%202-2.pdf
http://www.loc.gov/standards/premis/v2/premis-dd-%202-2.pdf
http://www.loc.gov/standards/premis/premisConformance_v4.pdf
http://www.digitalpreservation.gov/documents/bagitspec.pdf
http://en.wikipedia.org/wiki/MD5
https://tools.ietf.org/html/rfc1321
http://en.wikipedia.org/wiki/SHA-1
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://en.wikipedia.org/wiki/SHA-2
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://www.t10.org/
http://en.wikipedia.org/wiki/S.M.A.R.T

	Authors
	About The National Digital Stewardship Alliance
	Defining Fixity and Fixity Information
	Limits of Fixity and the Uses of Fixity Information
	Reasons to Collect, Check, Maintain, and Verify Fixity Information
	General Approaches to Fixity Check Frequency
	Considerations for Fixity Check Frequency
	Characteristics of Common Fixity Instruments
	Where to Store and Reference Fixity Information
	Further Reading
	Information About Relevant Standards and Specifications

