Fixity: problems with fixity at scale

Henry Newman Scott Rife 9/18/2017

What is Fixity?

- File Fixity is a digital preservation term referring to the property of a digital file being fixed, or unchanged
- Fixity is typically checked using a cryptographic hash function such as SHA256
- Cryptographic hash is a mathematical algorithm that maps data of arbitrary size to a bit string of a fixed size (a hash function)
 - It is more suitable to ensuring fixity than a checksum because it is infeasible to reverse engineer

What is a Checksum?

- A checksum is a small-sized datum derived from a block of digital data for the purpose of detecting errors which may have been introduced during transmission and/or storage.
- Checksums like CRC and parity are used to identify errors as packets and blocks of files are moved through a server or network
- A Cyclic Redundancy Check (CRC) is an errordetecting code used to detect accidental changes to data
- A parity bit, or check bit, is a bit added to a string of binary digits to ensure that the total number of 1-bits in the string is even or odd. Parity bits are used as the simplest form of error detecting code.

What is a Collision?

- It occurs when the same value is generated for 2 different sets of source bits
 - Take the well-known checksum function CRC32
 - If you feed this function the two strings "plumless" and "buckeroo", it generates the same value. This is known as a collision.
 - "plumless" => CRC32 => 0x4ddb0c25
 - "buckeroo" => CRC32 => 0x4ddb0c25

Scaling Fixity

- Scale refers growth in number of bytes and/or number of files
- CRC codes in network packets are 32 bit.
 - Originally implemented 1 (Mb/sec) Megabit Ethernet networks
- Parity bit in memory
 - Early implementations Kilobytes (KiB) of memory
- Parity bit in bus communication on the backplane of servers
 - Early implementations 80 Megabytes/sec SCSI

Collisions increase at scale

- Collisions can occur
- 87.3 to 238.3 packets/second in Megabit Ethernet. Call it 100 to make the math easier.
- 1,000,000 packets/second in 10 Gigabit Ethernet
- Assuming every packet has an error, at 100 packets a second, the likelihood of a collision is near 0.
 - At 25,000 it is 10%
 - At 75,000 it is 50%
 - At 200,000 it is 100%

http://preshing.com/20110504/h ash-collision-probabilities/ 9/18/2017

Probability of collisions in CRC

Here is a graph for N $=2^{32}$. This illustrates the probability of collision when using 32– bit CRC. It's worth noting that a 50% chance of collision occurs when the number of packets is 77,163. Also note that the graph takes the same S-curved shape for any value of N.

http://preshing.com/20110504/hashcollision-probabilities/ 9/18/2017

Probability of a collision is reduced by increasing the number of bits in hash

	Number of 32-bit hash values	Number of 64-bit hash values	Number of 160-bit hash values	Odds of a hash collision	
	77163	5.06 billion	1.42×10^{24}	1 in 2	
	30084	1.97 billion	5.55×10^{23}	1 in 10	Odds of a full house in poker
	9292	609 million	1.71×10^{23}	1 in 100	1 in 693
	2932	192 million	5.41×10^{22}	1 in 1000	1 in 4164
	927	60.7 million	1.71 × 10 ²²	1 in 10000	Odds of being struck by lightning 1 in 576000
	294	19.2 million	5.41×10^{21}	1 in 100000	
	93	6.07 million	1.71 × 10 ²¹	1 in a million	Odds of winning a 6/49 lottery 1 in 13.9 million
	30	1.92 million	5.41×10^{20}	1 in 10 million	Odds of dving in a shark attack
	10	607401	1.71 × 10 ²⁰	1 in 100 million	1 in 300 million
		192077	5.41 × 10 ¹⁹	1 in a billion	
		60740	1.71 × 10 ¹⁹	1 in 10 billion	
		19208	5.41 × 10 ¹⁸	1 in 100 billion	
		6074	1.71 × 10 ¹⁸	1 in a trillion	Odds of a meteor
		1921	5.41 × 10 ¹⁷	1 in 10 trillion	landing on your house
		608	1.71 × 10 ¹⁷	1 in 100 trillion	111102 011101
		193	5.41 × 10 ¹⁶	1 in 10 ¹⁵	
		61	1.71 × 10 ¹⁶	1 in 10 ¹⁶	
		20	5.41 × 10 ¹⁵	1 in 10 ¹⁷	
7		7	1.71 × 10 ¹⁵	1 in 10 ¹⁸	

Hash collisions and packet errors increase at scale

- This does not mean that there is a packet with hash collision every second because not all packets are in error
- It is more likely that a network, with a component in distress / generating many error packets, can send a packet with bad payload through
- Multiple levels of checking are required to ensure fixity
- Note: If the header is corrupted then the packet is resent

Engineer and Budget solutions

- Fixity must be checked at different levels
 - File / Object
 - Shard / Stripe
 - Block / Packet

- Bit / Byte (SECDED Single error correction Double error detection)
- Systems must be engineered to perform these checks while keeping up with ingest and access
- Budgets must be justified to engineer systems to perform fixity and monitor errors

References

- http://www.digitalpreservation.gov/documen ts/NDSA-Fixity-Guidance-Reportfinal100214.pdf
- https://research.google.com/pubs/pub3516 2.html
- http://preshing.com/20110504/hashcollision-probabilities/
- https://www.caida.org/research/trafficanalysis/pkt_size_distribution/graphs.xml

